Ontwerpen met modellen

Het ontwikkelen van cursussen met een elektronisch werkboek voor de Open Universiteit

Gerard van den Boom (CELSTEC)
december 2011
De Open Universiteit ontwikkelt en verzorgt open hoger afstandsonderwijs. Centrale innovatieve onderwijsprojecten van de Open Universiteit zijn in een Instellingsbreed Platform Onderwijs (IPO) samengebracht. Het doel van IPO is een bijdrage leveren aan het versterken van de Open Universiteit als een instelling die kwalitatief hoogstaand, flexibel, open, gedigitaliseerd en webgestuurd afstandsonderwijs aanbiedt. In het programma van IPO staan daarom de volgende thema’s centraal: kwaliteitszorg, onderwijsontwikkeling, begeleiding, toetsen en tentaminering, de elektronische leeromgeving en multimedia.

De IPO rapportenreeks bevat publicaties uit de diverse projecten en richt zich vooral op docenten, onderwijsontwikkelaars en onderwijsadviseurs in het hoger onderwijs.

De IPO rapporten kunnen worden besteld bij

Open Universiteit
Secretariaat IPO
Postbus 2960
6401 DL Heerlen
Tel. 045-5762450
Ria.Wijermans-Overman@ou.nl

Verantwoording

Dit katern is een van de producten van het IPO-project Werkprocessen waarin aandacht is besteed aan het proces van onderwijsontwikkeling en de rol die gestandaardiseerde modellen daarbij kunnen spelen. De projectgroep bestond uit Harrie Adriaens, Gerard van den Boom, Martine Coun, Henry Hermans en Wessel Slot. Naast de projectgroepleden hebben Henk van den Brink, Diny Ebrecht, Jurjen Puls, Kathleen Schleurmans, Jesper Schumacher, Guido Timmermans, Daisy Tysmans, Louise Stijnen, Steven Verjans en Leo Wagemans op verschillende manieren bijgedragen aan dit katern. Ook is gebruik gemaakt van teksten uit diverse eerder verschenen handleidingen en katernen van de Open Universiteit.

De opdracht was niet om alle onderwijsontwikkeling in modellen te vangen, als ambitie werd gesteld dat zo’n 80% van de cursussen van de OU met de modellen ingericht zou moeten kunnen worden. Een aantal keren is geopperd dat modellen de creativiteit in de weg zouden staan. Wij zijn een andere mening toegedaan. Modellen zijn maar modellen. De onderwijspraktijk zal moeten uitwijzen of welke modellen het goed doen en welke minder of niet.

Een interessante optie lijkt ook het zelf samenstellen van ‘mixed models’, uitwerkingen waarin elementen van verschillende modellen met elkaar gecombineerd worden. Eigenlijk is alles denkbaar om tot attractief onderwijs te komen, als het maar goed ontworpen is.

Wij hopen dat de beschrijvingen, voorbeelden, instructies en suggesties voldoende blijken te zijn om het proces van cursusontwikkeling met de modellen soepel te laten verlopen, zodat er voor studenten bruikbare, goed bestudeerbare cursussen ontstaan.

Heerlen, december 2011
Inhoud

1 Inleiding ... 7
2 Onderwijs ontwerpen bij de Open Universiteit .. 9
 2.1 Uitgangspunten .. 9
 2.2 Didactische functies .. 10
 2.3 Analyse van de cursusontwikkelopdracht .. 13
 2.4 Didactische aanpak ... 14
 2.5 Didactisch scenario ... 15
3 De elektronische leeromgeving Studienet .. 18
 3.1 Mediamix .. 18
 3.2 Studienet ... 18
 3.2.1 Studienet: de centrale toepassing ... 19
 3.2.2 Moodle: een alternatief voor E-werkboeken ... 19
 3.2.3 Elluminate: de Virtuele klas ... 19
 3.2.4 QMP: een programma voor toetsen .. 20
 3.2.5 Emergo: een programma voor interactieve multimediale casussen .. 20
 3.3 Elke cursus een digitale cursuswerkplek of elektronische cursusomgeving 20
4 Modellen voor elektronische werkboeken ... 22
 4.1 Twee groepen modellen .. 23
 4.2 E-werkboek + bronnenmodel in meerdere varianten .. 23
 4.2.1 Studietaakvariant ... 25
 4.2.2 Deeltaakvariant .. 26
 4.2.3 Themavariant .. 27
 4.2.4 Blokvariant .. 28
 4.2.5 E-werkboek + bronnenmodel - De studieadviesvariant .. 29
 4.2.6 Varieties bij de varianten: toepassen van integratietaken .. 32
 4.3 Didactisch specifieke E-werkboekmodellen .. 33
 4.3.1 4C/ID E-werkboekmodel ... 34
 4.3.2 VGO E-werkboekmodel ... 38
 4.3.3 PGO E-werkboekmodel ... 42
 4.3.4 Casus E-werkboekmodel ... 49
 4.3.5 Project E-werkboekmodel ... 52
5 Bouwstenen voor modellen: activiteiten en andere objecten .. 57
 5.1 Activiteiten: leerdoelen en werkwoorden ... 59
 5.2 Activiteiten: open of gesloten, individueel of samen .. 62
 5.3 Activiteiten, interactie en de (on)mogelijkheden van de ELO .. 64
6 Afsluiting ... 79

Referenties ... 80

Bijlagen ... 82
 Bijlage 1 Cursusteam .. 82
 Bijlage 2 Omschrijving niveau bachelors en masters ('Dublin descriptoren') 83
 Bijlage 3 Voorbeeld didactisch ontwerp (ingevoeld voor deel van een cursus) 84
 Bijlage 4 Voorbeelden van werk- of actiewoorden (n.a.v. Anderson-Krathwohl taxonomie) 86
1 Inleiding

Het onderwijs van de Open Universiteit (OU) speelt zich af in twee omvangrijke processen. Het eerste proces richt zich op het maken van onderwijs, het tweede proces op het geven van onderwijs. Het maken van onderwijs duiden we aan met onderwijsontwikkeling of cursusontwikkeling. Voor het geven van onderwijs is de term onderwijsexploitatie in gebruik.

Dit katern gaat in op het maken van onderwijs, op de cursusontwikkeling. De OU volgt in grote lijnen het uit de instructional design theorie bekende ADDIE model (analyse, design, development, implementation en evaluation), maar geeft aan dat model voor haar werkprocessen een specifieke invulling en hanteert ook een eigen terminologie. De OU gebruikt initiatieffase, planfase, uitwerkfase en exploitatiefase. Figuur 1 toont de twee samenhangende hoofdprocessen (maken en geven van onderwijs) zoals ze bij de OU ‘in bedrijf zijn’. In de middelste rij staan de achtereenvolgende fasen, in de onderste rij de resultaten of producten van de fasen. De overgang tussen maken en geven van onderwijs is gemarked door de ‘go beslissing’. Bij de ‘go beslissing’ wordt nagegaan of alle materialen, middelen, regelingen en voorzieningen aanwezig en beschikbaar zijn, zodat studenten met een cursus aan de slag kunnen.

Figuur 1: Het onderwijsproces van de Open Universiteit

De start van de initiatieffase is niet scherp afgebakend. Het management, de curriculumcommissie of een individuele docent kan vaststellen dat het wenselijk is een bepaalde cursus te gaan ontwikkelen of reviseren. Aanleidingen daarvoor kunnen velerlei zijn, zoals ontwikkelingen die zich voordoen op het vakgebied, vragen van studenten of een evaluatieonderzoek dat is uitgevoerd. De initiatieffase mondt uit in een voorstel tot het ontwikkelen van een cursus. Dit voorstel komt vervolgens doorgaans als ontwikkelopdracht bij een bepaalde docent terecht. Idealiter wordt rond deze docent een cursusteam gevormd. Het cursusontwikkelingsproject is daarmee gestart.

In de planfase bakent de betreffende docent de te ontwikkelen cursus inhoudelijk definitief af. Verder wordt een didactisch ontwerp voor de cursus gemaakt en worden alle organisatorische en budgettaire zaken geregeld die nodig zijn om de cursus daadwerkelijk te kunnen realiseren. Dit alles wordt vastgelegd in een cursusplan.

1 Zie bijlage 1 Cursusteam
Ontwerpen met modellen

In de uitwerkfase worden teksten geschreven, audio en of video geproduceerd of geselecteerd, tentamenitems uitgewerkt, teksten geredigeerd, en wordt de cursuswebsite ingericht. Daarnaast wordt in deze fase de eventuele begeleiding voorbereid; benodigde materialen en draaiboeken worden uitgewerkt in een begeleidingsplan.

Als alles in concept gereed is, wordt de cursus met een beperkte groep studenten geproeftoetst. Proeftoetsen wordt dringend aangeraden, maar door vooral planningsperikelen wordt er soms van afgezien. Misschien begrijpelijk, maar vanuit oogpunt van kwaliteit toch geen goede zaak, want de proeftoetsresultaten kunnen aanleiding zijn de cursus aan te passen en verder te vervolmaken. In een voorlaatste stap worden proeftoetsresultaten verwerkt en vindt burea- en webredactie plaats.

In de exploitatiefase bestuderen de studenten de cursus, verzorgen docenten de geplande begeleiding en gaan ze in op ad hoc vragen die bij studenten rijzen. Via systematische evaluatie wordt de vinger aan de Pols gehouden en als de evaluatiereultaten daartoe aanleiding geven, wordt onderhoud aan de cursus gepleegd en wordt de cursus up-to-date gehouden.

Het onderwijsproces is een cyclisch proces. Wanneer evaluatie, ervaringen of ontwikkelingen in het vakgebied daartoe aanleiding geven, bijvoorbeeld door geconstateerde veroudering van vakinhoud, kan via een nieuwe initiatieffase een revisieproject opstarten.

De OU heeft goede ervaringen met het toepassen van enkele didactische modellen (leereenhedenmodel en tekstboek-werkboekmodel). Met deze modellen zijn vele cursussen, met in hoofdzaak schriftelijk materiaal, efficiënt ontwikkeld zonder voor elk ontwikkelproject de hele cursusstructuur van nul af aan opnieuw te hoeven bedenken. Het werken met die modellen heeft mede bijgedragen aan de algemeen erkende kwaliteit van het OU onderwijs. Dit verklaart waarom men ook voor cursussen die in Studienet worden uitgeleverd wil kunnen beschikken over enkele praktische modellen.

Het IPO-project werkprocessen heeft zich beziggehouden met modelontwikkeling voor cursussen waarvan de aansturing van het onderwijs via Studienet verloopt. Dit heeft geresulteerd in een aantal modellen voor elektronische werkboeken. Routines die zich bewezen hebben zijn samengebracht in de modellen zodat ze als inspiratie kunnen dienen en efficiënt kunnen worden hergebruikt.

In het vervolg van dit katern komen achtereenvolgens aan de orde: onderwijs ontwerpen bij de OU (hst. 2), Studienet (hst. 3), modellen (hst. 4) en bouwstenen voor elektronische werkboeken (hst. 5).
2 Onderwijs ontwerpen bij de Open Universiteit

Een heel belangrijke fase in het onderwijsontwikkelproces is de planfase. In de planfase wordt een cursus inhoudelijk en didactisch gedefinieerd en vastgelegd in het ontwerp van de cursus. Net als bij het bouwen van een huis is het uiteindelijke resultaat afhankelijk van het ontwerp en de kwaliteit daarvan. De kern van onderwijsontwerpen is het bedenken van een scenario voor het leerproces van studenten. Bij de Open Universiteit spreken we in dit verband doorgaans van het opstellen van een ‘inhoudelijk-didactisch scenario’ of kortweg ‘didactisch scenario’.

Bij het opzetten en invullen van het didactisch scenario voor een cursus moet rekening gehouden worden met de uitgangspunten van de OU en met de uitkomsten van de analyse van de cursusontwikkelopdracht. Inhouden, didactische aanpak, te gebruiken bronnen, doelen en toetsen, begeleiding, kortom alle belangrijke zaken passeren in de ontwerpfase de revue en worden in een blauwdruk van de cursus vastgelegd. In dit hoofdstuk komen hierna eerst kort de uitgangspunten aan bod (2.1). Vervolgens gaan we in op de didactische functies die in het onderwijs gerealiseerd moeten worden (2.2). In 2.3 is een 10-vraag gegeven aan de hand waarvan de informatie verzameld kan worden die een ontwikkelaar nodig heeft om met een gerust hart het ontwerp van een cursus op te stellen. Ten slotte komen in dit hoofdstuk de keuze voor een didactische aanpak (2.4) en het didactisch scenario aan de orde (2.5).

2.1 Uitgangspunten

Voor de cursusontwikkeling vormt het Onderwijsconcept van de OU 2 een eerste belangrijk kader. Het Onderwijsconcept zegt over cursussen:

“In de regel bestaat het cursusmateriaal uit een digitale cursuswerkplek op studienet en schriftelijk materiaal in de vorm van tekstboeken of readers. Het hart van de cursus wordt gevormd door de digitale cursuswerkplek op studienet. Hier vindt de student:
- up-to-date cursusinformatie,
- het meest actuele nieuws over de cursus of de cursusinhoud,
- de aansturing van de studie (taken, leerdoelen),
- de communicatiemogelijkheden m.b.t. de cursus (fora, virtuele klas, ...),
- multimediale bronnen,
- links,
- eventueel ook de elektronische versie van de tekstboeken en readers.
Tekstboeken en readers worden nog gedrukt uitgeleverd. Als het mogelijk is worden ze echter ook elektronisch uitgeleverd omdat dit bijvoorbeeld meer zoekfuncties oplevert of omdat afbeeldingen veel groter en mooier digitaal kunnen worden uitgeleverd.

Meer dan nu het geval is, wordt gebruik gemaakt van multimediale content. Als multimediale toepassingen een meerwaarde hebben voor de cursus, dit kan zowel voor het realiseren van de leerdoelen als voor de aantrekkelijkheid van het materiaal zijn, dan moet expliciet voor multimediale toepassingen gekozen worden. De OUNL moet de mogelijkheden bieden om dit snel, adequaat en goedkoop te realiseren. Deze multimediale toepassingen worden via de werkplek beschikbaar gesteld.

De aansturing van de studie gebeurt via de digitale cursuswerkplek. Taken, leerdoelen, vragen, opgaven, toelichtingen, toetsen, feedback en voorbeelden worden digitaal aangeboden. Hierbij wordt zoveel mogelijk gebruik gemaakt van de meerwaarde die webgebaseerde uitlevering biedt, meer interactie met studenten, meer multimediale of meer actuele voorbeelden, meer illustraties en animaties en verwijzingen naar links op het internet.”

2 Versie 09 april 2008 – Kathleen Schlusmans – U2008/2254
Een tweede belangrijk kader is gegeven in de uitgangspunten van het OU onderwijs: het onderwijs van de OU is ‘open’ in een aantal opzichten. De OU kent een open toelating. Voor een groot deel van het aanbod van de OU geldt dat studenten er gebruik van kunnen maken zonder aan formele ingangsvereisten qua vooropleiding te voldoen. Dit betekent dat studenten zonder vwo of havo diploma cursussen kunnen afnemen en bestuderen. Een tweede betekenis van de openheid betreft de onafhankelijkheid van tijd, plaats en tempo. Studenten van de OU zijn voor het overgrote deel van hun onderwijs niet gebonden aan een bepaalde plaats of tijd. En verder kunnen zij studeren in het tempo dat hen het beste past. Voor het ontwerp van het onderwijs stellen deze vormen van openheid speciale randvoorwaarden waarmee rekening gehouden moet worden.

2.2 Didactische functies

Onderwijs faciliteert leerprocessen van studenten. Daartoe geeft elk onderwijs, en bij de OU betekent dat elke cursus, invulling aan een aantal didactische functies. De belangrijkste didactische functies zijn:

Onderwijs structureert en stuurt het studeren van de studenten

Onderwijs maakt inhoud of leerstof voor de studenten toegankelijk
Dat betekent dat de inhoud of leerstof die een student nodig heeft om de doelstellingen te bereiken beschikbaar en toegankelijk moet zijn. Beschikbaar door het concreet aan de studenten aan te bieden, bijvoorbeeld in de vorm van een tekstboek, een dvd of een website of door aan te geven waar en hoe bepaalde inhoud te vinden is. Daarnaast kan het toegankelijk maken betekenen dat inhouden waar nodig behapbaar en bestudeerbaar worden gemaakt met behulp van toelichtingen, aanvullingen, voorbeelden, schema’s, inleidingen en/of samenvattingen. Ten slotte kan toegankelijkheid behalve door concrete beschikbaarstelling of verwijzingen ook worden gerealiseerd door studenten een strategie aan te leren voor het zoeken, vinden en verwerken van de nodige informatie.

Onderwijs activeert studenten
Inhoud of informatie is geen onderwijs. Onderwijs moet uitdagen en aanzetten tot actieve bestudering en verwerking van inhouden. Dit gebeurt meestal door het verstrekken van taken, opdrachten, oefeningen, extra aanwijzingen, opgaven, sommen, etc. Van het alleen lezen van wiskundepogaven met hun uitkomsten of het lezen over aanpakken voor projectmatig werken leren studenten doorgaans niet om wiskundige opgaven op te lossen of projectmatig te werken. Van het oplossen van sommen en daarbij het regelmatig maken van de nodige fouten en het ontdekken van de juiste procedures en bewerking, kortom door het dóen, leer je veel meer. Dat geldt net zo voor het leren projectmatig te werken, maar ook voor het maken van een ontwerp voor...

2 Zie o.a. Instellingsplan OU 2011-2015
een iPhone of iPad app, het kritisch beschouwen en beschrijven van een schilderij of het schrijven van een pleitnota. Het aanbieden van geschikte en gevarieerde activiteiten die studenten kunnen uitoefenen bij en met inhouden of informatie stimuleert het actieve leren.

Bij het activeren speelt ook de kwestie van individueel studeren of samenwerken. Sommige activiteiten kunnen beter alleen gedaan worden, andere beter samen. Per activiteit kan hierin gekozen en gevarieerd worden. Gemaakte keuzes bepalen voor een deel ook de applicaties die gebruikt gaan worden.

Onderwijs motiveert studenten
Het onderwijs moet zo attractief mogelijk zijn voor studenten. Het moet studenten uitdagen en uitnodigen om mee aan de slag te gaan. Vaak is het voldoende als een student zich in leerstof kan herkennen of de gebruikswaarde ervan kan inzien. “Als ik dit kan, dan wordt dat voor mij in de toekomst heel gemakkelijker en word ik minder afhankelijk van de hulp van anderen”. Vaak is het motiverend als je inhouden op verschillende manieren krijgt aangeboden. Bijvoorbeeld, een korte tekst met aansluitend een filmfragment. Niet motiverend is het als leerstof onduidelijk is, als het onnodig saai gebracht wordt, als het veel te moeilijk of veel te gemakkelijk is. Motiverend is het als beheersing van leerstof opgevat kan worden als een beloning.

Onderwijs voorziet in toetsen
Toetsen hebben te maken met gestelde doelen. Toetsen maken het mogelijk een diagnose te stellen. Met toetsen kan een student of een onderwijsinstelling nagaan of men op de goede weg is wat betreft het vorderen in de richting van het bereiken van de doelstellingen.

Toetsen worden gebruikt vooraf aan het studeren, tijdens het studeren en na het studeren.

Bij de eerste vorm gaat het vooral om vast te stellen wat de studenten al meebrengen aan voorkennis. Als de benodigde voorkennis aanwezig is kan van start gegaan worden met een cursus of een taak. Is de voorkennis onvoldoende aanwezig dan vindt doorgaans een bijspijkeractie plaats.

Toetsen tijdens het studeren worden vooral ingezet om de vinger aan de pols te houden en daarmee het studieproces te bewaken. Deze toetsen kunnen aanleiding zijn om stukken leerstof domweg te herhalen of nog eens op een andere manier te bekijken en aan te pakken.

Toetsen na het studeren worden gebruikt voor certificering en/of bij advisering voor verdere studie.

Onderwijs voorziet in feedback
Feedback is aan de orde in relatie tot de taken, opdrachten, oefeningen, opgaven, sommen, etc. als hiervoor genoemd bij het activeren. Studenten moeten weten in hoeverre ze de taken, opdrachten, etc. naar behoren hebben uitgevoerd. Daarom is het zeker in relatie tot de toetsen belangrijk studenten te voorzien van zo volledig mogelijke feedback op de door hen geleverde prestaties. Wat ging er goed en wat ging er fout?

Analyse van de fouten levert aanknopingspunten voor verder studeren.

Feedback moet in het onderwijs zo zijn voorzien dat een student het just in time krijgt. Te vroege of (veel) te late feedback is niet bevorderlijk voor het leerproces. Feedback kan zijn ingebouwd in de leeromgeving. Dit kan voor gesloten opdrachten, vragen, taken, etc. waarbij het antwoord eenduidig is. Bij meer open opdrachten, vragen en taken ligt het voor de hand dat de docent de feedback verzorgt in reactie op de prestaties van studenten. Als alternatief voor docentfeedback kan peerfeedback worden toegepast. Dit laatste heeft als voordeel dat studenten ook leren van het verzorgen van feedback. Het activeert hun leren door ‘vanaf de andere kant’ naar de leerinhoud te kijken.
In tabel 1 is voor elke didactische functie met een aantal voorbeelden aangegeven hoe ze als onderdeel of activiteit in een cursus zijn terug te vinden.

Tabel 1: Didactische functies met voorbeelden van concretiseringen

<table>
<thead>
<tr>
<th>Didactische functie</th>
<th>Voorbeelden: onderdelen en activiteiten</th>
</tr>
</thead>
</table>
| Sturen en structureren van de studie | - Leerdoelen expliciteren
- Verwachtingen expliciteren
- Duidelijke structuur aanbrengen in cursus
- Cursus opdelen in lessen, leereenheden of studietaken
- Het inplannen van Elluminatesessies (Virtuele klas)
- Indicatie geven van normatieve studielast
- Studeeraanwijzingen formuleren
- Leerteksten schrijven en redigeren
- Artikelen of tekstboeken selecteren
- Bronnen op internet selecteren
- Aangeven welke teksten en bronnen verplicht en welke facultatief zijn
- Toelichtingen, uitleg of voorbeelden geven
- Presentaties via Elluminate verzorgen (en opnemen)
- Links naar alternatieve bronnen geven
- Verwerkingsopdrachten formuleren
- Studeeraanwijzingen geven
- Studenten aanzetten tot samenwerken bij de studie
- Taken formuleren
- Problemen aanbieden
- Casussen aanbieden
- Reflectieopdrachten aanbieden
- Elluminatesessies organiseren
- Voorbeelden en cases aandragen
- Op een persoonlijke manier schrijven
- Aansluiten bij ervaringen van de studenten
- Aansluiten bij leefwereld van studenten
- Toepassingsmogelijkheden van inhoud aangeven
- Leerdoelen expliciteren
- Ingangstoetsen aanbieden
- Zelftoetsen in het materiaal opnemen
- Tentamenvoorbeelden aanbieden
- Automatische feedback geven bij gesloten vragen
- Voorbeeldantwoorden geven bij open vragen
- Feedback geven door docenten individueel of groepsgewijs via Elluminate
- Peerfeedback geven door medestudenten

*C Bewerkte tabel, ontleend aan IPO-rapport *Elektronisch werkboek* (Caniëls & Coun, 2008).*
2.3 **Analyse van de cursusontwikkelopdracht**

Om een didactisch scenario te kunnen opstellen is het nodig dat je al veel weet over allerlei aspecten van de te ontwikkelen cursus. Met andere woorden, het is nodig eerst een grondige analyse uit te voeren, waarbij bijvoorbeeld de volgende vragen als leidraad kunnen dienen.

Tabel 2: Vragen voor de analyse van een cursusontwikkelopdracht

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wie zijn de studenten?</td>
</tr>
<tr>
<td></td>
<td>Welke eigenschappen hebben ze? Welke voorkennis brengen ze mee? Welke verwachtingen hebben ze bij de cursus?</td>
</tr>
<tr>
<td>2</td>
<td>Wat is de plaats van de cursus in het curriculum?</td>
</tr>
<tr>
<td></td>
<td>Welke cursussen worden als voorkennis verondersteld? Voor welke cursussen dient deze cursus als voorkennis? Hoe kunnen aansluitingen voorzien worden?</td>
</tr>
<tr>
<td>4</td>
<td>Wat zijn de globale doelen van de cursus?</td>
</tr>
<tr>
<td></td>
<td>Gaat het vooral om basiskennis? Gaat het om specialistische vakkennis? Komen er vakspecifieke vaardigheden of methodieken aan bod? Ook algemene academische vormingsaspecten en vaardigheden?</td>
</tr>
<tr>
<td>5</td>
<td>Wat is de globale inhoud van de cursus?</td>
</tr>
<tr>
<td>6</td>
<td>Wat is de beoogde studielast in uren van de cursus?</td>
</tr>
<tr>
<td>7</td>
<td>Hoeveel tijd en geld zijn beschikbaar voor de ontwikkeling van de cursus?</td>
</tr>
<tr>
<td>8</td>
<td>Op hoeveel capaciteit (tijd en geld) mag de cursus rekenen voor de begeleiding en tentaminering als de cursus eenmaal in exploitatie is? Als men hiervoor de cijfers kent kan men dit relateren aan verwachte studentaantallen (zie 9), alvast doorberekeningen maken en consequenties incalculeren. Bijvoorbeeld, het ontwikkelen van een grote itembank voor de tentaminering is rendabeler naarmate er meer studenten verwacht worden en begeleidingsvormen die veel uren per student vragen drukken zwaar op de exploitatie en zijn moeilijk te verantwoorden bij grote aantallen studenten.</td>
</tr>
<tr>
<td>9</td>
<td>Hoeveel studenten zal de cursus naar verwachting trekken?</td>
</tr>
<tr>
<td>10</td>
<td>Als er van de cursus al een eerdere versie aanwezig is: Welke informatie is er al over die eerdere versie van de cursus verzameld? Wat is er in evaluatieve zin over te zeggen?</td>
</tr>
</tbody>
</table>

Gewapend met de kennis uit de analyse, dat wil zeggen met de zo volledig mogelijke antwoorden op alle tien vragen, kan men aan het didactisch scenario beginnen.

5 Ontleend aan de BKO-cursus ‘Het (her)ontwerp van een cursus’ (2009).
2.4 Didactische aanpak

Een eerste belangrijke beslissing die men op basis van de analyseresultaten moet nemen betreft het kiezen van de meest geschikte en gewenste didactische aanpak. Hiervoor is geen standaardrecept te geven. Alle factoren moeten tegen elkaar afgewogen worden en argumenten die dat afwegen oplevert, kunnen in samenhang met elkaar tot de beslissing voor een centrale didactische aanpak leiden. Allereerst is belangrijk dat de aanpak aansluit bij de doelstellingen van de cursus. Welke doelen wil men met de cursus bereiken? Het maakt nogal verschil of men zich in hoofdzaak wil richten op het laten verwerven van vakinhoudelijke kennis of dat men vooral, of ook bezig wil zijn met vakspecifieke professionele of algemene (academische) vaardigheden, of dat ook houdingsaspecten deel uitmaken van de doelstellingen. Om tot een gefundeerde keuze van een aanpak te komen kan men bijvoorbeeld de volgende vragen beantwoorden.

- Wil men een ‘vertellende’ cursus, een cursus waarin de inhoud successievelijk en geleidelijk aan de studenten wordt uitgelegd zoals bij contactonderwijs bijvoorbeeld in een collegereeks zou gebeuren?
- Wil men de studenten uitdagen tot het zoeken van oplossingen voor gestelde problemen of vragen, daarbij gebruik makend van door het onderwijs aangedragen of zelfgezochte informatie?
- Wil men studenten hun kennis zelf actief laten ‘ontdekken’?
- Wil men de aanpak van de cursus baseren op of laten aansluiten op binnen het vakgebied ingeburgerde methoden, algoritmen, heuristiek of procedures?
- Ligt het voor de hand studenten te laten samenwerken of is het aangewezen om de cursus vooral individueel te laten bestuderen?

De antwoorden op deze en soortgelijke vragen bepalen in belangrijke mate de keuze voor een didactische aanpak. In dit verband is het goed te beseffen dat de gekozen centrale didactische aanpak mede van invloed is op de opvattingen die studenten (impliciet) meekrijgen over de aard van kennis en vaardigheden die ze aangeboden krijgen in een cursus.

Veel cursussen bij de OU zijn opgezet in een variant van het aloude leereenhedenmodel of het tekstboekwerkboekmodel. Bij het maken van een cursus waarbij de ‘aansturing’ van het leren via een E-werkboek verloopt, is het zuivere leereenhedenmodel niet geschikt om toe te passen om de eenvoudige reden dat de vakinhoud niet integraal in het E-werkboek wordt aangeboden. Het tekstboek-werkboekmodel voldoet beter. Vakinhoud wordt aangeboden in boekvorm (tekstboek, handboek of reader) en/of in digitale vorm (bijvoorbeeld tekstuele bronnen in pdf-formaat, video of multimediaal). Voor deze opzet is een aantal varianten van een E-werkboek + bronnenmodel uitgewerkt (zie 4.2). In het E-werkboek staan de taken, opdrachten, instructies, etc. die de docent bij de vakinhoud heeft bedacht. Het model is ‘open’ in die zin dat men er nog alle kanten mee op kan en dat het kan worden gebruikt in relatie tot verschillende soorten doelstellingen. Het model geeft vooral invulling aan de cursusstructuur. Realisatie van de andere didactische functies gebeurt via de binnen die structuur geprogrammeerde instructie- en leeractiviteiten.

Voor een aantal specifieke didactische aanpakken zijn andere E-werkboek modellen geschikt. Deze worden in 4.3 verder uitgewerkt (het 4C/ID-model, het VGO-model, het PGO-model, het Casus-model en het Project-model).

Een 4C/ID aanpak is bij uitstek geschikt wanneer men studenten complexe vaardigheden of professionele competenties wil aanleren. Realistische complete taken bepalen de hoofdstructuur van deze aanpak. Leertaken vormen de ruggengraat van de cursus. Kenniscomponenten en deelvaardigheden die met de leertaken samenhangen komen in deze aanpak nadrukkelijk aan de orde en zijn bovendien steeds heel functioneel ingebed in de leertaken. (zie verder 4.3.1).

6 4C/ID staat voor 4 componenten instructional design
De VGO aanpak\(^7\) is geschikt voor een cursus waarbij het verwerven van basiskennis centraal staat. De vraaggestuurde aanpak kenmerkt zich door contextrijke en toepassingsgericht leren dat wordt gestructureerd en aangestuurd door vragen. Een cursus met dit model is zo opgebouwd dat studenten zich naast de vakinhoud ook een systematische, stapsgewijze aanpak van informatieverwerving en –verwerking eigen maken. Er is op meerdere niveaus begeleiding ingebouwd waardoor elke student kan kiezen voor ondersteuning-op-maat bij haar of zijn leerproces. De begeleidings niveaus zijn gekoppeld aan hoofd-, deel- en detailvragen waarmee de informatieverwerving en –verwerking in het E-werkboek wordt aangestuurd (zie verder 4.3.2).

Een PGO aanpak\(^8\) structureert het onderwijs op basis van problemen en een systematische probleemaanpak. Een PGO-cursus confronteert studenten met problemen die ze moeten oplossen. Actief zoeken, selecteren en verwerken van allerhande informatie komt aan de orde. Afhankelijk van het soort probleem moeten studenten diverse soorten producten opleveren. Deze aanpak is bij uitstek geschikt om studenten in groepjes gezamenlijk aan problemen te laten werken, hoewel ook een individuele variant denkbaar is. Het model voor een PGO E-werkboek voorziet voor de taaktypen die binnen de PGO aanpak zijn te onderscheiden een systematische, gestructureerde taakopzet. Zo volgt bijvoorbeeld de klassieke probleemtaak de aanpak volgens de zevensprong (zie verder 4.3.3).

Bij een Casus aanpak is een cursus opgezet rond één of meerdere casussen. Casussen bestaan uit zo realistisch mogelijke presentaties van praktijkgevallen die studenten krijgen voorgezet in combinatie met allerlei activiteiten.

Bij complexe casussen wordt een cursus bij voorkeur met behulp van Emergo uitgewerkt. Als u overweegt met Emergo aan de slag te gaan, raadpleeg dan in ieder geval www.emergo.cc en neem kennis van de uitgewerkte voorbeelden van Emergo-casussen in de Demonstrator en de overige gepresenteerde achtergrondinformatie (zie verder 4.3.4).

Bij een Project aanpak is een cursus opgezet volgens een scenario dat het proces van projectmatig werken als basis heeft. De basisstructuur van een cursus volgt de projectfasering, van initiatief tot nazorg. De projectstructuur leent zich voor invulling met diverse vakinhouden. Alle studenten kunnen aan inhoudelijk hetzelfde project werken, maar het is ook mogelijk binnen deze structuur elke student aan haar of zijn eigen project te laten werken (zie verder 4.3.5).

2.5 Didactisch scenario

Een didactisch scenario schetst het voorziene verloop van het onderwijsleerproces dat men beoogt in gang te zetten. Voor alle deelnemers aan het onderwijsleerproces werkt in het didactisch scenario aangegeven wat deze deelnemers doen of moeten doen en welke middelen, materialen en tools gebruikt kunnen of moeten worden.

De BKO-cursus ‘Het (her)ontwerpen van een cursus’ zegt daarover:

“Een didactisch scenario kun je vergelijken met een draaiboek voor een theatervoorstelling. Een theatervoorstelling bevat een aantal scènes. Voor elke scène staat per acteur beschreven wat hij zegt en doet, welke rekwisieten nodig zijn, welke belichting, geluid, gordijnbewegingen, decorwisseling op welke momenten worden ingezet en wat het eindresultaat van de scène is.

Een didactisch scenario beschrijft dit voor de ‘scènes’ in een cursus. De scènes in een cursus noemen we een studietaak. Dat is de kleinste afgeronde studie-eenheid van een cursus. Per studietaak beschrijft het scenario de activiteiten van de deelnemers (student, docent, etc.), wat voor hulpmiddelen (materialen, bronnen, tools, etc.) ze nodig hebben en hoelang alles zal duren”\(^9\).
Ontwerpen met modellen

De keuze voor een bepaalde didactische aanpak legt in de eerste plaats de hoofdstructuur van een cursus en het E-werkboek vast. Daarbinnen is er speelruimte voor de verdere uitwerking en invulling. Tijdens het opstellen van het didactisch scenario ontwerpt men die uitwerking en invulling. Men neemt besluiten over de instructie- en leeractiviteiten die men voorziet en over alle materialen en tools die bij die activiteiten nodig zijn. Wil men bijvoorbeeld studenten laten samenwerken aan het oplossen van een probleem of werkstuk dan zal een samenwerktool beschikbaar moeten zijn, maar ook een procedure voor de samenwerking die in het OU onderwijs doorgaans op afstand moet plaatsvinden.

Instructieactiviteiten zijn de activiteiten die een docent uitvoert. Voorbeelden zijn: uitleg of toelichting geven, een videofragment presenteren, een groepsdiscussie monitoren of modereren, een zelftoets geven. Voor dit soort activiteiten moeten in afstandsonderwijs specifieke maatregelen worden genomen, want in tegenstelling tot bij contactonderwijs, is de docent bij de uitvoering niet altijd aanwezig. Veel instructieactiviteiten zullen in ingeblikte vorm in het materiaal van de cursus ingebouwd zijn. Voorziene instructieactiviteiten die niet ‘inblikbaar’ zijn, moeten toch in het scenario van de cursus opgenomen worden om te voorkomen dat ze in de uitwerking van het scenario vergeten worden en ontbreken in de exploitatiefase. Voorbeelden van niet inblikbare instructieactiviteiten zijn begeleidingsbijeenkomsten in studiecentra of via Elluminate die op gezette tijden plaatsvinden, of het leveren van individuele feedback op een studentuitwerking van een bepaalde opdracht.

Leeractiviteiten zijn de activiteiten die een student uitvoert. Voor een deel vinden deze activiteiten plaats in reactie op instructieactiviteiten. Bijvoorbeeld het bestuderen van een artikel uit een reader, het deelnemen aan een asynchrone groepsdiscussie, of het opstellen van een mindmap betreffende een bepaald fenomeen. Maar studenten kunnen instructieactiviteiten ook op eigen initiatief of op initiatief van een medestudent uitvoeren. Dit is het geval bij bijvoorbeeld het voeren van een discussie in de discussiegroep van een cursus in Studienet, het samenwerken met een collega-student via Skype (www.skype.com/intl/nl/home), het delen van informatie via bijvoorbeeld Delicious (een toepassing voor social bookmarking; www.delicious.com), of het bijhouden van een studieblog of studiewiki.

Alle (inblikbare) instructieactiviteiten komen uiteindelijk in het E-werkboek terecht in de vorm van opdrachten, taken, opgaven, teksten, multimedia, toetsen en standaard feedback, etc. De benodigde materialen en tools kunnen op verschillende manieren worden aangeboden aan de studenten. In het didactisch scenario wordt vastgelegd welke elementen van de cursus in welke media en met welke applicaties zullen worden gerealiseerd. Het is verstandig om vroegtijdig, dus al in de planfase te bepalen of het elektronisch werkboek van je cursus in Moodle dan wel Blackboard zal worden gerealiseerd. En als je bijeenkomsten via Elluminate voorziet als instructieactiviteit, leg dit dan ook vast in het didactisch scenario en het cursusplan.

Een didactisch scenario kan worden uitgewerkt met behulp van het template ‘Het inhoudelijk-didactisch ontwerp’ (zie figuur 2). In elke rij kan een activiteit worden gespecificeerd. In de respectieve kolommen vindt men van links naar rechts een beknopte beschrijving van:

- de activiteit die voor de student geprogrammeerd wordt;
- het doel dat met de activiteit bereikt kan worden;
- de inhoud van de activiteit in een aantal kernwoorden;
- de materialen en middelen die een student nodig heeft bij de uitvoering van de activiteit en hoe deze voor de student toegankelijk zijn;
- de begeleiding die bij de activiteit voorzien is, waar relevant onderscheiden naar ‘inblikbare’ (bijv. standaard feedback bij een opdracht) en niet inblikbare (bijv. docent feedback op een werkstuk) begeleiding;
- het product dat de student geacht wordt op te leveren;
• de geschatte studielast van de activiteit;
• eventuele bijzonderheden. In deze kolom kan men ideeën en aandachtspunten vastleggen waarvoor de overige kolommen geen ruimte bieden, bijvoorbeeld ideeën over studenten laten samenwerken, het registreren van een tussenproduct dat zal meetellen voor het tentamen of dat bonuspunten zal opleveren.

Figuur 2 toont een voorbeeld van een template. Een voorbeeld van een deel van een inhoudelijk-didactisch ontwerp (inge vuld template) is te vinden in bijlage 3.

<table>
<thead>
<tr>
<th>Het inhoudelijk-didactisch ontwerp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cursusgegevens:</td>
</tr>
<tr>
<td>• Titel: <<Titel van de cursus>></td>
</tr>
<tr>
<td>• Plaats in het curriculum: <in ieder geval welke cursussen zijn voorkennis voor deze cursus?></td>
</tr>
<tr>
<td>• Omvang: <aantal modulen, studielast></td>
</tr>
<tr>
<td>• Leerdoelen: <beschrijving van leerdoelen></td>
</tr>
<tr>
<td>• Tentamensvorm: <beschrijving van de tentamensvorm></td>
</tr>
<tr>
<td>Structuur:</td>
</tr>
<tr>
<td>Activiteit</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Figuur 2: Voorbeeld template inhoudelijk-didactisch scenario

3 De elektronische leeromgeving Studienet

3.1 Mediamix

Voor het realiseren van het onderwijs gebruikt de Open Universiteit een scala aan middelen en media. Met mediamix wordt de verzameling media aangeduid waarmee een cursus is gerealiseerd. Aanvankelijk was schriftelijk materiaal het primaire medium in de vorm van compleet geïntegreerde cursusboeken, een hand- of tekstboek, een reader of een werkboek. Inmiddels geldt volgens het vigerende onderwijsconcept van de OU dat “de aansturing van de studie gebeurt via de digitale cursuswerkplek” (U2008/2254). Daarmee is het primaire medium nu de elektronische leeromgeving waarin dus de meeste didactische functies moeten worden gerealiseerd.

Speciale aandacht vraagt de didactische functie ‘leerstof(inhoud) toegankelijk maken’. Dit kan zich niet beperken tot de elektronische leeromgeving. Het hele scala aan media kan worden ingezet. Bronmateriaal kan bestaan uit een centraal *handboek of werkboek* (vgl. Tekstboek-werkboek cursus) of uit een reader waarin een verzameling bronnen die bij elkaar de inhoudelijke leerstof bevatten zijn samengebracht. En verder worden steeds meer andere media ingezet, zoals cd-rom, dvd, begeleider, studiecentrum, computerprogramma, Studienet, Internet, etc. En verder worden steeds meer andere media ingezet, zoals cd-rom, dvd, begeleider, studiecentrum, computerprogramma, Studienet, Internet, etc. En verder worden steeds meer andere media ingezet, zoals cd-rom, dvd, begeleider, studiecentrum, computerprogramma, Studienet, Internet, etc. En verder worden steeds meer andere media ingezet, zoals cd-rom, dvd, begeleider, studiecentrum, computerprogramma, Studienet, Internet, etc. En verder worden steeds meer andere media ingezet, zoals cd-rom, dvd, begeleider, studiecentrum, computerprogramma, Studienet, Internet, etc. En verder worden steeds meer andere media ingezet, zoals cd-rom, dvd, begeleider, studiecentrum, computerprogramma, Studienet, Internet, etc.

Voor de distributie kiest men bij voorkeur de handigste en goedkoopste optie. De belangrijkste opties:

- materiaal wordt fysiek naar de studenten gestuurd; teksten geprint, film op dvd, etc.;
- materiaal wordt via de cursuswebsite beschikbaar gemaakt, teksten als pdf, films streaming, databestanden downloadbaar, via links naar of urls van externe websites voor daar aanwezig bronmateriaal;
- studenten moeten zelf op zoek naar de bronnen.

3.2 Studienet

De elektronische leeromgeving (ELO) van de Open Universiteit heet *Studienet*. In 2005 is Blackboard als centrale applicatie van Studienet geïntroduceerd. Onder de motorkap van Studienet bevindt zich een aantal applicaties die met elkaar het elektronische deel van het onderwijs van de OU mogelijk maken. Momenteel zijn dat naast Blackboard: Moodle, Illuminate, Question Mark Perception (QMP) en Emergo (zie Figuur 3). Deze applicaties worden centraal ondersteund. Elke toepassing heeft zijn eigen sterke en zwakke kanten. De OU probeert de sterke kanten van elke toepassing zo te benutten dat Studienet als geheel de studenten maximaal faciliteert bij hun studeren. Om Studienet voor gebruikers overzichtelijk te houden streeft de OU ernaar om met zo min mogelijk applicaties zo ruim mogelijke functionaliteiten te bieden.

Figuur 3: Applicaties van Studienet

10 Voor meer hierover zie hst. 6 van het OU-lustrumboek: *Een leven lang eigenwijs studeren* (Schlusmans et al., 2009).
3.2.1 Blackboard: de centrale toepassing

De kernapplicatie van Studienet is Blackboard. Blackboard fungeert als ingang of portaal voor Studienet. Als een student of docent inglogt op Studienet, komt zij/hij (in Blackboard) op een pagina die ‘Mijn werkplek’ heet. Op deze ‘Werkplek’ vindt men allerhande informatie, die zover als mogelijk gepersonaliseerd is. Docenten vinden er de cursussen die ze geven en studenten vinden er de cursussen waarvoor ze zijn ingeschreven. Daarnaast vindt iedereen op zijn/haar werkplek alle communities waarvoor men is ingeschreven. Verder heeft elke faculteit een eigen faculteitstab die toegang geeft tot een faculteitspagina; docenten en studenten zien alleen de tabs die relevant voor haar of hem zijn. Via de tab ‘Content’ heeft elke gebruiker toegang tot het ContentSystem van Blackboard met voor iedereen een eigen map waarin bestanden opgeslagen en beheerd kunnen worden.

3.2.2 Moodle: een alternatief voor E-werkboeken

De Open Universiteit heeft er voor gekozen om naast Blackboard ook de elektronische leeromgeving Moodle te gebruiken. Moodle en Blackboard bieden in grote lijn dezelfde mogelijkheden. Afhankelijk van de voorkeur van faculteiten of individuele docenten kan men bij de uitwerking van elektronische werkboeken kiezen voor een van de twee elo’s. Elektronische werkboeken in Moodle zijn voor studenten via een directe link vanuit Blackboard te benaderen.

3.2.3 Elluminate: de Virtuele klas

Voor face to face begeleiding, individueel of in groepsverband kunnen de studiecentra gebruikt worden. Maar sinds de integratie van Elluminate in de ELO kan begeleiding inmiddels ook relatief eenvoudig digitaal op afstand worden verzorgd. Voor het organiseren van digitale bijeenkomsten gebruikt de Open Universiteit de applicatie Elluminate Live!. In het menu van de cursuswebsites is daarvoor dan een knop Virtuele klas beschikbaar.

Met Elluminate kunnen groeps-, maar ook een-op-een bijeenkomsten (bijv. een mondeling tentamen) worden georganiseerd. De bijeenkomsten vinden op vooraf vast te stellen tijdstippen plaats en kunnen bovendien worden opgenomen om ze op en later tijdstip nog eens af te spelen. Hierdoor kunnen studenten die een sessie niet hebben kunnen meemaken deze later alsnog bekijken. Interactie is dan uiteraard niet meer mogelijk.
3.2.4 QMP: een programma voor toetsen

QMP staat voor Questionmark Perception. QMP is een toepassing waarmee toetsen kunnen worden ontwikkeld, beheerd, afgenomen en geanalyseerd. Het programma voorziet in een groot aantal item- en vraagsoorten, van heel gesloten tot heel open.

De OU gebruikt Questionmark vooral voor de tentaminering van cursussen. Voor toetsen in de cursussen is het aangewezen in eerste instantie gebruik te maken van de toetsmodule die via Blackboard of Moodle beschikbaar is. Maar het is in beginsel ook mogelijk om formatieve toetsen in de cursussen via Questionmark af te handelen.

3.2.5 Emergo: een programma voor interactieve multimediale casussen

Emergo gebruikt voor het aanleren van complexe vaardigheden authentieke multimediale casussen. De casussen maken gebruik van een mix van ingebouwde en reële begeleiding, waaronder peerbegeleiding en bevatten naast pedagogische elementen ook elementen van simulatie en gaming. Dit dompelt studenten onder in een rijke en intrigerende leeromgeving waarin zij op effectieve en indringende wijze hun leerervaringen kunnen opdoen. De probleemsituaties zijn levensecht en confronteren de studenten voortdurend en direct met de gevolgen van hun handelen.

Emergo als zodanig biedt geen garantie voor succesvol onderwijs. Toepassing van Emergo vraagt naast hoogwaardige kwalitatieve inhoud voor de casussen om specifieke didactische deskundigheid bij ontwerp en ontwikkeling van realistische praktijkconfrontaties. De Emergo methodiek en toolkit kunnen daarbij helpen en bieden oplossingen die uiteindelijk kunnen leiden tot verlaging van de begeleidersdruk bij docenten, tot actief lerende studenten en betere realisering van de OU-uitgangspunten van vrijheid van tijd, plaats en tempo. De toolkit ondersteunt het inbouwen van onverwachte gebeurtenissen en andere gaming elementen.

Als u overweegt met Emergo aan de slag te gaan, raadpleeg dan in ieder geval www.emergo.cc en neem onder andere kennis van de uitgewerkte voorbeelden van Emergo-casussen die beschikbaar zijn onder de tab Demonstrators.

3.3 Elke cursus een digitale cursuswerkplek of elektronische cursusomgeving

De digitale cursuswerkplek waarover het onderwijsconcept spreekt, is onderdeel van de elektronische leeromgeving Studienet van de OU. Elke cursus heeft een eigen cursuswebsite binnen Studienet. Die cursuswebsite wordt ook wel de elektronische cursusomgeving genoemd, afgekort ECO. Elke faculteit heeft voor haar elektronische cursusomgevingen in Blackboard een eigen facultair basismodel vastgesteld. Zo’n basismodel definieert de menuserstructuur, de navigatiestructuur, de instellingen van een
Ontwerpen met modellen

cursus, de instellingen van tools, en de kleurstelling. Figuur 4 toont een voorbeeld van de menustрукuur in Blackboard 9.1.

Figuur 4: Voorbeeld van een cursusmenu volgens basismodel in Studienet/Blackboard

Door een basismodel met standaard menuknoppen wordt aan de didactische functie ‘Sturen en Structureren’ een eerste invulling gegeven. Over meerdere cursussen heen bevordert dit eenduidigheid in opbouw en terminologie. Dat verhoogt de herkenbaarheid en is handig voor studenten.

Onder de knop ‘E-werkboek’ vinden de studenten de concrete opdrachten, aanwijzingen, extra uitleg, opgaven, taken, etc. Afhankelijk van het ontwerp van een cursus kan de menuknop E-werkboek een ander label krijgen, bijvoorbeeld: Thema’s, Blokken, Studietaken, Leereneenheden of een ander passend label.

Nieuwe cursussen worden inclusief het facultaire basismodel door ELOSA\(^{11}\) aangemaakt en beschikbaar gesteld.

\(^{11}\) ELOSA = ELO Service Afdeling een onderdeel van het OSC (Onderwijs Service Centrum).
4 Modellen voor elektronische werkboeken

In figuur 4 is een voorbeeld van een cursusmenu volgens het basismodel in Studienet/Blackboard gegeven. In de facultaire basismodellen is een menuknop E-werkboek te vinden, waarvoor overigens ook een ander label kan worden gebruikt (Thema’s, Studietaken, Leereenheden o.i.d.). Achter de menuknop E-werkboek (of Studietaken e.d.) zijn de meeste basismodellen vrijwel leeg. Er is in de basismodellen achter deze menuknop geen verdere structurering of invulling gegeven, omdat dit niet in algemene zin kan. Afhankelijk van de gekozen didactische aanpak en het voorziene didactisch scenario moeten cursusontwikkelaars hier zelf invulling aan geven. Om docenten en andere cursusontwikkelaars te helpen bij het opzetten van hun Ewb’s heeft het IPO-project Werkprocessen een aantal modellen voor de invulling van elektronische werkboeken uitgewerkt. Deze modellen bieden in de eerste plaats een structuur en eenheid in gebruik van terminologie voor alle elementen achter de knop E-werkboek. Dat is handig voor studenten omdat het duidelijkheid en herkenbaarheid oplevert. Ook voor cursusontwikkelaars is het handig, omdat niet steeds opnieuw het wiel uitgevonden hoe te worden. Omdat er meerdere E-werkboek modellen beschikbaar zijn kan men de best passende kiezen en deze volgens eigen wensen aanpassen en fine tunen.

De basisstructuur van alle modellen is simpel. Rationale van deze basisstructuur is dat studenten voordat ze met de eigenlijke leeractiviteiten beginnen zich altijd eerst moeten kunnen oriënteren op de opbouw van het werkboek en de doelstellingen die ermee bereikt kunnen worden. Het Ewb bestaat daarom altijd uit drie hoofdelementen: een Ewb-introductie, een Ewb-kern, en een Ewb-afsluiting (zie Figuur 5).

Figuur 5: Basisstructuur van elektronische werkboeken

De Introductie van een E-werkboek bevat minimaal een inleidende tekst en de doelstellingen. Deze laatste zijn voor het hele Ewb geldend en daarom op algemeen of globaal niveau beschreven. Naast inleidende tekst en doelstellingen is de introductie de geschikte plek om algemene studeeraanwijzingen en verwijzingen op te nemen.

In plaats van een tekstuele introductie kan men ook kiezen voor een kort videofragment waarin een docent vertelt en laat zien wat er in het E-werkboek aan bod zal komen en hoe een en ander gebruikt kan worden om efficiënt te studeren.

Zeker wanneer het E-werkboek wordt uitgewerkt in Blackboard, kan men overwegen de Ewb-introductie en de introductie van de cursus als één geheel uit te werken en te plaatsen achter de cursusmenuknop Introductie van het facultaire basismodel (zie Figuur 4). In het cursusontwerp kan men een afspraak hierover vastleggen.

In de Kern van een E-werkboek vindt aansturing van eigenlijke leeractiviteiten plaats. De kern is gestructureerd en opgedeeld in studietaken, thema’s, blokken, leereenheden, deeltaken, etc.

De Afsluiting van een E-werkboek bestaat uit minimaal een eindtoets en een afsluitende tekst. Een eindtoets is een voorbeeldtentamen waarmee een student ter voorbereiding op het eigenlijke tentamen zijn of haar kennis en vaardigheden kan toetsen om eventuele lacunes op te sporen. De student kan nagaan in
hoeverre zij of hij de doelstellingen heeft bereikt en of met een gerust gevoel aan het tentamen kan worden deelgenomen. Informatie over het tentamen zelf is verder te vinden onder de cursusmenunop Tentamen van het facultaire basismodel. In de afsluitende tekst wordt de cursus afgerond en kunnen eventuele suggesties voor verdere studie en verwijzingen naar andere cursussen geplaatst worden.

4.1 Twee groepen modellen

Voor verdere invulling van E-werkboeken werken we hierna twee groepen E-werkboekmodellen uit. De eerste groep betreft enkele varianten van een algemeen E-werkboek + bronnenmodel. Dit model is vooral gebaseerd op de bestaande OU-praktijk. De tweede groep betreft een vijftal didactisch specifieke E-werkboekmodellen die zijn gebaseerd op specifieke didactische aanpakken en binnen IPO uitgevoerde pilots. Gebruik makend van de mogelijkheden van Blackboard en Moodle zijn de modellen die worden gepresenteerd allemaal opgebouwd met behulp van een beperkt aantal bouwsteentjes. De bouwstenen die de hoofdstructuur van het Ewb bepalen zijn in de figuren in deze katern blauwgrijs van kleur, zoals in figuur 5. De Ewb-kern wordt ingevuld met behulp van allerlei andere bouwsteentjes. Deze geven we met andere kleuren aan.

Voor alle modellen geldt dat het model niets zegt over het aantal, de omvang en de volgorde van de elementen waaruit het Ewb is opgebouwd. Dat is afhankelijk van het didactisch scenario en werkt van de cursus en is daaraan gerelateerd aan de opbouw en indeling van het tekstboek, de reader of ander bronnenmateriaal. Aantal, omvang en volgorde van elementen zijn dus implementatievariabelen die in het ontwerp van een concrete cursus moeten worden uitgewerkt.

Ook geldt voor alle modellen dat de elementen in een vaste volgorde aan de studenten worden aangeboden. Voor wat betreft de bestudering ervan hoeft de volgorde echter niet vast te liggen. Het bestuderen kan:
- Lineair: vaste volgorde van te bestuderen elementen;
- Willekeurig: studenten kunnen de volgorde van bestudering zelf bepalen;
- Concentrisch: meerdere taken achtereenvolgens meer dan één keer doorlopen (bijvoorbeeld: eerst globaal, dan verdiepend en ten slotte naar keuze op een of enkele taken specialiserend).

Tijdens het ontwerpen van het Ewb legt men de meest gewenste volgorde van bestudering van elementen vast in de volgorde van presenteren. Wil men een andere volgorde ook mogelijk maken dan is het goed daar bij de ontwikkeling rekening mee te houden en dit ook inhoudelijk en technisch uit te werken en expliciet naar de studenten te communiceren in de Ewb-introductie.

4.2 E-werkboek + bronnenmodel in meerdere varianten

Het E-werkboek + bronnenmodel kan gezien worden als elektronische tegenhanger van traditionele didactische modellen van de OU. Essentieel is dat het E-werkboek (Ewb) wordt toegepast in combinatie met een tekstboek of in combinatie met een verzameling bronmateriaal die bestaat uit meerdere bronnen, bijvoorbeeld een reader, kaartmateriaal, video’s, wettenbundels, urls (vgl. het traditionele schriftelijke tekstboek/werkboekmodel 12,13). Zover de bronnen digitaal beschikbaar zijn kan hiervoor het best de menuknop ‘Bronnen’ van het facultaire basismodel gebruikt worden.

Met behulp van de eerder genoemde bouwsteentjes zijn enkele veel voorkomende didactische scenario’s of varianten uitgewerkt. Door te variëren en te combineren met beschikbare bouwsteentjes ontstaan verschillende varianten. De varianten die we hierna uitwerken zijn genoemd naar typerende elementen volgens welke de Ewb-kern is ingedeeld. Voor alle varianten geldt dat de eigenlijke leeractiviteiten worden

Ontwerpen met modellen

aangestuurd door de activiteiten die de kern van de studietaken vormen. Het didactisch scenario bepaalt hoe eentonig of hoe rijk aan variatie een cursus uiteindelijk is.

De variant met de simpelste structuur is de Studietaakvariant. De structuren van de Deeltaakvariant, de Themavariant en de Blokvariant zijn meer gelaagd en dus wat complexer. In de schematische voorstellingen van de modellen wordt de neutrale bouwsteen ‘activiteit’ gebruikt om het meest concrete niveau van de aansturing van de leeractiviteiten weer te geven.

In hoofdstuk 5 wordt uitgebreid stilgestaan bij de activiteiten.

Figuur 6: Bouwstenen van een Ewb
4.2.1 Studietaakvariant

Het Ewb bestaat uit een Ewb-introductie een Ewb-kern en een Ewb-afsluiting.
De Ewb-kern is gevuld met twee of meer studietaken.
Elke studietaak bestaat uit een Studietaak-introductie, een Studietaak-kern en een Studietaak-afsluiting.
De kern van elke Studietaak is gevuld met twee of meer activiteiten. Deze activiteiten concretiseren het didactisch scenario (zie figuur 7).

![Diagram van Studietaakvariant]

Figuur 7: Structuurschema van de studietaakvariant

Uiteraard hoeven binnen een Ewb niet alle studietaken gelijk van opbouw te zijn. Door studietaken met verschillende opbouw te combineren is men vrij om precies die activiteiten uit te werken die in het didactisch scenario voorzien zijn.
Flexibiliteit van de studietaakvariant is eenvoudig in te zien. Door in de studietaak-kern te variëren met activiteiten ontstaan verschillende taken. Vergelijk de voorbeelden a en b in figuur 8.

![Alternatieve invulling van de kern van een studietaak]

Figuur 8: Alternatieve invullingen van de kern van een studietaak

Implementatie in Blackboard en Moodle is in technische zin op meerdere manieren mogelijk. In democursussen zullen de verschillende mogelijkheden naast elkaar getoond worden.
4.2.2 Deeltaakvariant

Een wat complexere variant ontstaat wanneer binnen de studietaken een verdere indeling in deeltaken wordt toegepast.
Het Ewb bestaat uit een Ewb-introductie een Ewb-kern en een Ewb-afsluiting.
De Ewb-kern is gevuld met twee of meer studietaken.
Elke studietaak bestaat uit een Studietaak-introductie, een Studietaak-kern en een Studietaak-afsluiting.
De kern van de studietaken is gevuld met twee of meer deeltaken.
Elke deeltaak bestaat uit een Deeltaak-introductie, een Deeltaak-kern en een Deeltaak-afsluiting.
De kern van elke deeltaak is gevuld met twee of meer activiteiten. Deze activiteiten concretiseren het didactisch scenario.
Deeltaken binnen een studietaak zijn als oranje blokjes weergegeven.

Een studietaak in deze variant bestaat dus uit een Studietaak-introductie, twee of meer deeltaken en een Studietaak-afsluiting. De concrete activiteiten zijn als onderdelen van de deeltaak als gele blokjes weergegeven (zie figuur 9).

Figuur 9: Structuurschema van de deeltaakvariant

Implementatie in Blackboard en Moodle is in technische zin op meerdere manieren mogelijk. In democursussen zullen de verschillende mogelijkheden naast elkaar getoond worden.
4.2.3 Themavariant

Weer anders ziet het er uit als in de kern van het Ewb meerdere studietaken worden overkoepeld door een indeling in thema’s. In het volgende schema is deze overkoepelende tussenlaag van thema’s in roze blokken weergegeven.

Het Ewb bestaat weer uit een Ewb-introductie een Ewb-kern en een Ewb-afsluiting.
De Ewb-kern is gevuld met twee of meer thema’s.
Elk thema bestaat uit een Thema-introductie, een Thema-kern en een Thema-afsluiting.
De kern van de thema’s is gevuld met twee of meer studietaken.
Elke studietaak bestaat uit een Studietaak-introductie, een Studietaak-kern en een Studietaak-afsluiting.
De kern van elke studietaak is gevuld met twee of meer activiteiten. Deze activiteiten concretiseren het didactisch scenario (zie figuur 10).

![Structuurschema van de themavariant](image)

Implementatie in Blackboard en Moodle is in technische zin op meerdere manieren mogelijk. In democursussen zullen de verschillende mogelijkheden naast elkaar getoond worden.
4.2.4 Blokvariant

Soms kiest men ervoor binnen een Ewb een aantal studietaken wel te overkoepelen, maar is de term thema niet van toepassing. Het meer neutrale 'blok' verdient dan de voorkeur. In het volgende schema is deze overkoepelende tussenlaag met blauwe blokken weergegeven.

Het Ewb bestaat weer uit een Ewb-introductie een Ewb-kern en een Ewb-afsluiting.
De Ewb-kern is gevuld met twee of meer blokken.
Elk blok bestaat uit een Blok-introductie, een Blok-kern en een Blok-afsluiting.
De kern van de blokken is gevuld met twee of meer studietaken.
Elke studietaak bestaat uit een Studietaak-introductie, een Studietaak-kern en een Studietaak-afsluiting.
De kern van elke studietaak is gevuld met twee of meer activiteiten. Deze activiteiten concretiseren het didactisch scenario (zie figuur 11).

![Structuurschema van de blokvariant](image)

Implementatie in Blackboard en Moodle is in technische zin op meerdere manieren mogelijk. In democursussen zullen de verschillende mogelijkheden naast elkaar getoond worden.
4.2.5 E-werkboek + bronnenmodel - De studieadviesvariant

De studieadviesvariant is een verbijzondering van voorgaande varianten. Het belangrijke verschil met de andere varianten van het E-werkboek + Bronnenmodel is dat bij deze variant de student vóór het bestuderen van inhoud een studieadvies krijgt dat gebaseerd is op een voorkennistoets. Met de voorkennistoets wordt vastgesteld wat een student al weet en kan. De voorkennistoets leidt tot een studieadvies, een overzicht van studietaken, thema’s of blokken waarvan volgens de toets gebleken is dat de student de inhoud ervan onvoldoende beheerst. Met de voorkennistoets wordt vastgesteld wat een student al weet en kan. De voorkennistoets leidt tot een studieadvies, een overzicht van studietaken, thema’s of blokken waarvan volgens de toets gebleken is dat de student de inhoud ervan onvoldoende beheerst. Op basis van het advies kan een student haar of zijn studie efficiënt richten op nieuw te verwerven kennis en vaardigheden, voortbouwend op reeds aanwezige kennis.

De basisstructuur van een cursus volgens deze variant ziet er als volgt uit: figuur 12.

Figuur 12: Structuurschema studieadviesvariant

In de Ewb-afsluiting is een eindtoets opgenomen. Met die toets kan een student nagaan of in de Ewb-kern uitgevoerde leeractiviteiten het gewenste resultaat hebben opgeleverd of dat er nog extra inspanningen moeten worden geleverd voordat dat met een gerust hart aan het tentamen kan worden deelgenomen.

De studieadviesvariant hoeft niet altijd voor een gehele cursus te worden ingezet, maar kan ook per studieaanwijzing, thema of blok of voor slechts een deel van de blokken worden toegepast. Afhankelijk van gekozen opzet krijgt

ontwerpen met modellen
een student een studieadvies voor de hele cursus ineens (figuur 13) of stap voor stap per studietaak, thema of blok (figuur 14).

De studieadviesvariant kan dus gerealiseerd worden met een voorkennistoets aan het begin van een hele cursus of met een voorkennistoets per blok of thema. In het eerste geval heeft de toets betrekking op alle inhouden van de hele cursus. In het tweede geval beslaat de toets een deel van de inhoud, bijvoorbeeld van een tekstboek hoofdstuk of van samenhangend aantal artikelen in een reader.

Figuur 13 geeft een schematisch overzicht van de studieadviesvariant met een voorkennistoets voor de hele cursus. De figuur toont bij wijze van illustratie een cursus die is gestructureerd met gebruikmaking van blokken. Het zal duidelijk zijn dat de voorgestelde systematiek ook in de studietaak-, de thema- en de deeltaakvariant kan worden ingezet.

Figuur 14 toont het model van de studieadviesvariant met voorkennisttoetsen per blok. In plaats van in de blokvariant kan de systematiek ook toegepast worden voor een cursus opgezet met studietaken of thema’s. Het toepassen van studieadvies in de deeltaakvariant kan, maar ligt niet voor de hand.
Als eerder gezegd, bevat de Ewb-afsluiting de eindtoets van de cursus. Bij de blokgewijze aanpak kan men overwegen ook deeltoetsen per blok (of thema) op te nemen. Alle keuzes die men met betrekking tot de opzet maakt kunnen het best al in een vroeg stadium, tijdens het ontwerpen worden vastgelegd in het didactisch scenario.

Implementatie in Blackboard en Moodle is in technische zin op meerdere manieren mogelijk. In democursussen zullen de verschillende mogelijkheden naast elkaar getoond worden.

Figuur 14: Structuurschema model met studieadvies per blok

Implementatie van de routine om een studieadvies af te leiden uit een voorkennisstoets wordt voor Blackboard en Moodle nog afzonderlijk onderzocht en uitgewerkt. Een eerste verkenning heeft geleerd dat in Blackboard de routine wel op blokniveau, maar nog niet op cursusniveau kan worden gerealiseerd. Verder onderzoek, ook voor Moodle staat op stapel.

14 De implementatie van de routine om een studieadvies af te leiden uit een voorkennisstoets wordt voor Blackboard en Moodle nog afzonderlijk onderzocht en uitgewerkt. Een eerste verkenning heeft geleerd dat in Blackboard de routine wel op blokniveau, maar nog niet op cursusniveau kan worden gerealiseerd. Verder onderzoek, ook voor Moodle staat op stapel.
4.2.6 Variaties bij de varianten: toepassen van integratietaken

Bij alle voorstaande varianten kan men naast de gewone studietaken ook integratietaken inzetten. In een integratietak geeft men studenten de gelegenheid om het geleerde van afzonderlijke studietaken met elkaar in verband te brengen en zo op een hoger niveau te verwerken.

In de thema- en blokvariant kan men ervoor kiezen elk thema of blok afzonderlijk met een dergelijke integratietak af te sluiten. In plaats van te werken met integratie per blok of thema kan men de integratie ook voor de hele cursus in een keer aanbieden door het laatste thema of blok geheel aan integratie te besteden. Het ligt voor de hand om integratiemomenten in een cursusopzet of didactisch scenario in te passen op die plaatsen waar in het structuurschema een studietaak n, een thema n of een blok n is aangegeven. Zo'n integratiemoment is dus steeds het laatste element van de kern van een Ewb, thema of blok. In schema’s:

a. in de studietaakvariant:

b. in de blokvariant:

c. in de themavariant:

Figuur 15: Optie voor inpassen van integratietaken, -blokken of -thema’s

Het toepassen van integratietaken dient in het didactisch scenario uitgewerkt te worden.
4.3 Didactisch specifieke E-werkboekmodellen

“Het gaat erom dat je nieuwe informatie zo verpakt dat het aansluit bij de leefwereld van scholieren. Neem een standaard biologieles, waar je de nerven op het blad van een plant zo goed mogelijk moet natekenen en benoemen. Je kunt leerlingen ook de vraag stellen hoe water zonder hulp helemaal boven in de plant terecht kan komen.”

De gedachte die in dit citaat verpakt zit is ook van toepassing op het onderwijs van de OU. Daarom heeft IPO een aantal specifieke didactische aanpakken verkend. In aanvulling op de varianten die in paragraaf 4.2 zijn beschreven zijn vijf E-werkboekmodellen uitgewerkt waarin een specifieke didactische aanpak wordt toegepast.

- 4C/ID E-werkboekmodel (4 Componenten Instructional Design); speciaal geschikt voor de instructie van complexe vaardigheden.
- VGO E-werkboekmodel (Vraaggestuurde Geleide Ontdekking); speciaal voor cursussen die starten vanuit ‘centrale vraagstellingen’ en waarbij ingebouwde begeleiding is opgezet als een minder of meer ver uitgewerkte ‘didactische dialoog’, waarin studenten begeleid worden bij het bestuderen van bronmaterialen.
- PGO E-werkboekmodel (Probleemgestuurd Onderwijs); speciaal voor cursussen waarin probleemgestuurd wordt gewerkt.
- Casus E-werkboekmodel voor cursussen waarin casussen een grote rol spelen, leersto is ‘opgehangen’ aan casussen, zoals in bijvoorbeeld de Case Method.
- Project E-werkboekmodel voor cursussen waarin studenten een project moeten uitvoeren en er dus sprake is van projectmatig werken.

Met het VGO-model is inmiddels de NW-cursus Bodem en Water (N29211) ontwikkeld en in exploitatie. Het model is parallel aan de ontwikkeling van deze cursus in samenwerking door NW en IPO opgesteld. Een veldtoets met het model is in uitvoering en aan verdere documentatie van het model en ontwikkelinstructies wordt gewerkt. Het E-werkboek van de cursus Bodem en Water is in Moodle geïmplementeerd. Complexe uitwerkingen van het Casus-model zijn onder andere te vinden in Emergo (www.emergo.cc). Het Projectmodel is toegepast in bijvoorbeeld de cursus Project Onderwijswetenschappen (O35421). In deze cursus moeten studenten in de rol van projectleider een zelfgekozen, eigen project uitvoeren in een realistische onderwijscontext, bijvoorbeeld de eigen werkomgeving. Concretisering van de andere twee modellen (4C/ID en PGO) kan uitwerking krijgen parallel aan de ontwikkeling van telkens een concrete cursus. De termijn waarop dit zal gebeuren is afhankelijk van de planning van relevante cursusontwikkelingsprojecten. Voor ondersteuning bij het ontwerp van een cursus volgens een van de didactisch specifieke modellen kan een beroep worden gedaan op ‘docentondersteuning’ een van de reguliere activiteiten van IPO.

15 Robbert Dijkgraaf in De Volkskrant, 16-04-2011.
16 Als je met een van deze modellen aan de slag wilt is verdere verdieping in het betreffende model nodig.
17 Het ‘loket’ voor deze ondersteuning is Wil Giesbertz (wil.giesbertz@ou.nl).
4.3.1 4C/ID E-werkboekmodel

4C/ID staat voor Vier Componenten Instructional Design.
Met het 4C/ID-model kan men cursussen opzetten waarvan het hoofddoel is studenten complexe vaardigheden aan te leren, bijvoorbeeld het modelleren van een systeem in UML, het voorbereiden en houden van een pleidooi in een strafzaak, het managen van een project, het schrijven van een recensie, het uitvoeren van een literatuuronderzoek of het ontwikkelen van een lessenserie.

De vier componenten in het 4C/ID-model zijn: 1) hele taken, 2) ondersteunende informatie, 3) procedurele informatie en 4) deeltaakoefening. Het model zorgt er voor dat de vier componenten van het model op een adequate manier met elkaar gemixt worden tot een efficiënte cursus.

Het 4C/ID-model gaat ervan uit dat studenten met realistische hele taken worden geconfronteerd en dat ze die steeds in zijn geheel uitvoeren. Aanvankelijk werken studenten aan eenvoudige varianten van een taak en gaandeweg krijgen ze complexere varianten van dezelfde taak voorgeschoteld. Voor varianten van een taak die van hetzelfde complexiteitsniveau zijn, gebruikt het 4C/ID-model de term taakklasse. De eenvoudigste varianten van dezelfde taak vormen samen taakklasse 1, meer complexe varianten taakklasse 2 en de meest complexe varianten vormen taakklasse n.

Binnen elke taakklasse is de begeleiding bij de eerste taak maximaal en neemt bij elke volgende taak steeds verder af. In het ideale geval is er geen begeleiding meer nodig bij de uitvoering van de laatste taak. Bij de uitvoering van de taken krijgen studenten twee soorten informatie aangeboden. Ondersteunende informatie die nodig is om überhaupt aan een taak te kunnen beginnen wordt vooraf verstrekt. Denk aan noodzakelijke voorkeur van vakinhoud of contextinformatie. Andere informatie die nodig is tijdens de uitvoering van een taak wordt juist tijdens de uitvoering, just in time, beschikbaar gesteld. Deze laatste soort informatie betreft vooral routinematige aspecten van een taak en heet in het 4C/ID-model procedurele informatie (bijvoorbeeld een checklist of een proces-worksheet).

Specifieke onderdelen die aan een taak zijn te onderraken (deeltaken) kunnen ook los van de hele taak behandeld en geofend worden. Meestal gebeurt dit om reden van efficiëntie vooral met onderdelen die nogal ingewikkeld zijn en waarvan een goede beheersing echt nodig is voor uitvoering van de hele taak. Voor deeltaakoefening wordt als het ware even een stapje opzij gezet. Na oefening gaat men verder met de hele taak.

Het 4C/ID-model onderscheidt zes taaktypen genoemd naar de soorten problemen die erin aan de orde zijn.
• Conventionele taak (Conventional task): In dit type taak krijgt een student een probleemsituatie voorgeschoteld met als opdracht een bruikbare oplossing voor het probleem te leveren. Dit taaktype is in hoge mate vergelijkbaar met authentieke problemen waarmee professionals geconfronteerd worden. Dit taaktype weerspiegelt de authentieke taakssituatie waarin professionals verkeren. Om het oplossen van problemen aan te leren is dit niet het geschikste taaktype; het is wel zeer geschikt in toets- en examensituaties. In het leerproces zijn andere, hierna beschreven, taaktypen aangewezen.
• Uitgewerkt voorbeeld (Case study): In een uitgewerkt voorbeeld krijgt de student een taak of probleem inclusief het gehele oplossingsproces voorgeschoteld. Hierbij kan men denken aan beschrijvingen of video-opnames van de aanpak van een taak. Alles wordt stap voor stap voorgedaan, uitgelegd en becommentarieerd. De student voert zelf niet uit, maar is actief in een observerende rol.
• Aanvultaak (Completion task): Bij dit taaktype is een situatie of gevalsbeschrijving gegeven. Dat kan als beschrijving maar ook in de vorm van video-opnames. Het probleem dat speelt in de gegeven situatie wordt verhelderd en een gedeeltelijke oplossing van het probleem wordt gegeven. Aan de student de taak om het ontbrekende deel van de oplossing leveren.
• Doelvrije taak (Goal free task): Ook bij dit taaktype is een situatie gegeven. De student heeft als taak de situatie of het probleem grondig te verkennen en op zoek te gaan naar alle mogelijke aangrijpingspunten
Ontwerpen met modellen

om het probleem aan te pakken. Het gaat bij dit type taak dus niet om dé oplossing maar om het exploreren van zoveel mogelijk oplossingsroutes die tot een oplossing zouden kunnen leiden.

- Omgekeerde taak (Reverse task): Bij dit type taak krijgen studenten een oplossing voorgeschoteld inclusief het doel dat met deze oplossing bereikt kan worden. Aan de student wordt vervolgens gevraagd op zoek te gaan naar problemen waarvoor de gegeven oplossing bruikbaar of van toepassing is.
- Imitatie taak (Imitation task): de grondvorm van dit taaktype is de combinatie van een conventionele taak die de student moet uitvoeren en een uitgewerkt voorbeeld waaruit de student precies kan afleiden hoe het conventionele probleem aangepakt kan worden.

Bij een uitgewerkt voorbeeld is de ingebouwde begeleiding het duidelijkst aanwezig. De taakuitvoering wordt namelijk helemaal voorgedaan. Een student hoeft de taak niet echt zelf uit te voeren. De student hoeft ‘slechts’ de voorgedane uitvoering te bestuderen om voor zichzelf een beeld te vormen van alles wat er bij zo’n taak komt kijken. Bij een conventionele taak heeft de ondersteuning meer het karakter van ‘vangnetbegeleiding’. Immers een dergelijke conventionele taak voert een student zelfstandig uit zodat zij of hij zelf kan ervaren en voor anderen demonstreren of de taak beheerst wordt op het niveau van de betreffende taakklasse en dus kan worden overgestapt naar moeilijker, complexere varianten van de taak.

Wat is de structuur van het Ewb?
Centraal in een 4C/ID cursus staat het E-werkboek. Het Ewb legt de route vast en is de ‘Tomtom’ voor het bestuderen van de cursus. Naast het E-werkboek krijgen studenten allerlei materialen en middelen fysiek aangeboden of worden ze ernaar verwezen. Dat geldt voor bronnen als teksten in een reader, film op dvd, downloadbare databestanden, urls, etc.

Het Ewb bestaat uit een introductie – een kern – en een afsluiting.
De kern van het Ewb is opgebouwd uit blokken die samenhangen met de taakklassen. Binnen elke taakklasse worden de vier componenten (hele taken, ondersteunende informatie, procedurele informatie en deeltaakoefening) op een in het didactisch scenario bepaalde wijze met elkaar gecombineerd. Een taakklasse, dus elk blok, begint doorgaans met een Uitgewerkt voorbeeld (Case study) en sluit af met een Conventionele taak (Conventional task). Tussen Uitgewerkt voorbeeld en Conventionele taak kunnen alle andere taaktypen geplaatst worden. Keuze van taaktype voor deze tussenliggende taken is afhankelijk van inhoud en ondersteuning die nodig geacht wordt.
(Figuur 16 toont schematisch de basisschikstructuur van een Ewb volgens het 4C/ID-model).

Het aantal taakklassen en het aantal taken in een taakklasse liggen niet vast, maar zijn afhankelijk van de complexiteit van de taak zoals die is vastgesteld in de taakanalyse. Algemeen gesteld: hoe complexer de taak, des te meer taakklassen. In het didactisch scenario wordt het aantal vastgelegd. Bij heel complexe taken zoals het uitvoeren van een experimentele onderzoek is het onmogelijk dit binnen de omvang van een OU-module aan de orde te stellen. Men kan in dit geval overwegen ondersteunende informatie en één taakklasse in één module te behandelen en in een vervolgmodule een tweede en derde taakklasse te laten doorlopen. Of men deze twee modulen als één twee-moduuls cursus of als twee één-moduuls cursussen aanbiedt, is niet echt wezenlijk voor de didactische aanpak. Het is een kwestie die op het niveau van de inrichting van het totale curriculum moet worden uitgemaakt.

Van welke Studienet applicatie(s) maakt dit model gebruik?
Ewb-introductie

Ewb-kern

Ewb-afsluiting

Blok 1 = taakklasse 1
Blok 2 = taakklasse 2
Blok n = taakklasse n

Blok-introductie

Blok-kern

Blok-afsluiting

Ondersteunende informatie

Hele taak 1
Hele taak 2
Hele taak n

Uitgewerkt voorbeeld

Activiteit 1
Activiteit n

Procedurele informatie

Procedurele informatie

Procedurele informatie

Procedurele informatie

Figuur 16: Structuurschema Ewb volgens 4C/ID-model

18 Gestippelde blokken zijn optioneel
Meer informatie?
Uitgebreide informatie over het 4C/ID-model is te vinden in onder andere:

- OU-cursus O23421: *Ontwerpen van onderwijs en opleidingen*.
- http://www.tensteps.info/
- http://portal.ou.nl/web/topic-4cid
4.3.2 VGO E-werkboekmodel

VGO staat voor vraaggestuurde ontdekking.
Het VGO-model is geschikt voor cursussen die starten vanuit ‘centrale vraagstellingen’ die aan studenten worden voorgelegd en die beantwoord kunnen worden op basis van een verzameling bronmaterialen. Ter ondersteuning van die beantwoording voorziet het model in ingebouwde begeleiding op meerdere niveaus. Op het meest globale niveau geen tot weinig begeleiding en op het meest gedetailleerde niveau begeleiding die is opgezet als een ver uitgewerkte ‘didactische dialoog’. Het model is uitgewerkt parallel aan de ontwikkeling van de cursus Bodem en Water (N29211), faculteit Natuurmilieuwetenschappen.

Met het VGO-model kan men cursussen opzetten waarvan het hoofddoel is dat studenten zich de (basis)kennis van een vakgebied (of deelterritor daarvan) eigen maken en leren toepassen. In termen van de Dublin descriptoren gaat het primair om doelstellingen op de aspecten ‘kennis en inzicht’ en ‘toepassen kennis en inzicht’. Maar daarnaast krijgt door de in het VGO-model gebruikte aanpak ook het aspect ‘leervaardigheden’ expliciete aandacht.

Het verwerven van kennis en inzicht begeurt in een stapsgewijze aanpak voor informatieverwerving en -verwerking. De stappen die steeds worden doorlopen zijn: verkennen, oriënteren, bestuderen en integreren. Daarnaast is op strategische momenten in de cursus voorzien in controlemomenten, waarop studenten aan de hand van een toets gekoppeld aan een reeks kernbegrippen kunnen nagaan of de beoogde kennisgroei in voldoende mate heeft plaatsgevonden. Als dit inderdaad het geval is, dan kunnen de studenten vervolgens in een toepassingstest de inmiddels verworven kennis en inzichten toepassen in een casus (bijvoorbeeld een gebeurtenis of probleem dat speelt in de eigen omgeving). Het consequente, systematische doorlopen van de stappen verkennen, oriënteren, bestuderen en integreren beoogt de studenten vertrouwd te maken met deze systematische aanpak om eigen kennisverwerving zelfstandig verder te kunnen organiseren (leervaardigheden).

De vakinhoud (de bronmaterialen) krijgen studenten aangeboden in de vorm van een bronnenboek of reader. In aanvulling op bronnenboek of reader kan inhoud uiteraard ook in andere dan schriftelijke vorm worden aangeboden: video, digitale bestanden in allerlei formaten, urls, etc. De bronnen kunnen in principe in elke denkbare ordening worden aangeboden, van een strikt logisch systematische tot een volstrekt willekeurige ordening. Essentieel in de instructie- en leerprocessen is namelijk niet de ordening van de inhouden, maar de aansturing door het systematisch aan de orde stellen van vragen waarmee de inhoudelijke bronnen benaderd kunnen worden en die de zoektocht naar relevante informatie in de bronnen stimuleren en focussen.

Per studietaak is één hoofdvraag aan de orde. Studenten worden uitgedaagd om die hoofdvraag met behulp van beschikbare bronnenmaterialen te beantwoorden. Lukt ze dat niet, dan worden ze aangespoord om de bronnen met behulp van een aantal deelvragen te bestuderen, waarna de hoofdvraag wel beantwoord zou moeten kunnen worden. Lukt dit om welke reden ook dan nog niet, dan kunnen ze een beroep doen op ingebouwde begeleiding die stapsgewijze kennisopbouw mogelijk maakt door een systematiek van sub- of detailvragen.

Op het hoogste niveau werkt een student dus zelfstandig aan de beantwoording van een hoofdvraag. Op het volgende niveau kan een student gebruik maken van deelvragen waarvan de beantwoording ervoor zorgt dat de benodigde kennis verzameld wordt om vervolgens de hoofdvraag te beantwoorden. Op het derde niveau kan de student een beroep doen op begeleiding bestaande uit voorgestructureerde sub- en deelvragen en instructies die de student ‘bij de hand nemen’ en door de materialen leiden waarin de antwoorden zijn te vinden.

\[19\] Cursusteamleiding: Daisy Tysmans en Guido Timmermans. Het ontwerp van de cursus Bodem en Water is uitgeroepen tot ‘Onderwijsproduct van het jaar 2010’ van de Open Universiteit.

\[20\] Basiskennis: Feiten en begrippen, maar ook Relaties, structuren en theorieën op de beheersingsniveaus: weten, begrijpen en toepassen (zie ook paragraaf 5.1).
Ontwerpen met modellen

vinden. Stap voor stap wordt de student via het beantwoorden van detailvragen aangezet tot het verzamelen van kennis in de veronderstelling dat dit haar of hem in staat stelt de deelvragen van het tweede niveau of, zonder deze tussenstap, direct de hoofdvraag te beantwoorden.

Wat is de structuur van het Ewb?

Centraal in een VGO cursus staat het E-werkboek. Het Ewb legt de routes vast die een student kan volgen. Naast het E-werkboek krijgen studenten allerlei materialen en middelen fysiek aangeboden of ze worden er naar verwezen. Teksten in een hand- of bronnenboek of reader naast film op dvd, downloadbare databestanden, urls, etc.

Het Ewb bestaat net als bij alle andere modellen uit een introductie, een kern en een afsluiting. De kern van het Ewb is opgebouwd uit studietaken waarbij in elke studietaak één hoofdvraag aan de orde is die in principe met het beschikbare bronnenmateriaal door de studenten beantwoord zou moeten kunnen worden. Het aantal hoofdvragen in de cursus bepaalt het aantal studietaken. Elke studietaak kent een vaste opbouw. Twee citaten uit de cursus Bodem en Water illustreren goed hoe de studietaken zijn opgebouwd en hoe de verschillende begeleidingsniveaus in het materiaal zijn ingebouwd.

De opbouw van studietaken:

```
“Elke studietaak is opgebouwd rond een centrale hoofdvraag. Door het beantwoorden van deze hoofdvraag krijgt u inzicht in de natuurlijke processen in het bodem-water-systeem en hoe de mens deze kan beïnvloeden. Het beantwoorden van deze hoofdvraag gebeurt in vier stappen.
In het onderdeel Verkennen maakt u kennis met de centrale hoofdvraag van de studietaak. U krijgt meer inzicht in deze vraag in het onderdeel Oriënteren. In het onderdeel Bestuderen en integreren beantwoordt u de vraag. Daarbij volgt u de leerroute die is toegesneden op de kennis en vaardigheden waarover u reeds beschikt. Zo krijgt u, afhankelijk van de leerroute, meer of minder begeleiding bij het bestuderen van de leerstof.
In het onderdeel Toepassen gaat u de verworven kennis en vaardigheden toepassen in uw eigen omgeving. Ten slotte gaat u in het onderdeel Reflecteren kritisch beoordelen of u inderdaad de kennis en vaardigheden heeft opgedaan die bij deze studietaak als doel gesteld werden. Voor een reflectie op het onderdeel Toepassen maakt u een zelftoets. Voor een reflectie op het onderdeel Bestuderen en integreren maakt u een zelftoets.”
```

De ingebouwde begeleidingsniveaus:

```
“In deze cursus is gekozen voor een didactische opzet met verschillende begeleidingsniveaus. U kunt kiezen bij het doorlopen van een studietaak of u veel of weinig begeleiding wenst. Standaard bij elke studietaak verken u eerst het thema aan de hand van toegankelijk multimediamateriaal, vervolgens gaat u zich oriënteren op de belangrijkste aspecten van het probleem dat tijdens de eerste verkenningsfase werd aangereikt. Daarna gaat u in het onderdeel Bestuderen en integreren aan de slag met de hoofdvraag die alle theorie van de studietaak beslaat. U hebt nu de keuze om (indien u uit eerdere cursussen reeds voldoende voorkennis heeft over dit thema) meteen zelf de hoofdvraag te beantwoorden en daarna de studietaak af te ronden, óf extra begeleiding te nemen bij het beantwoorden van de hoofdvraag. In het laatste geval wordt de hoofdvraag opgedeeld in een aantal meer specifieke deelvragen, die u met behulp van multimediabronnen en verwijzingen naar het handboek en de bronnenmap oplost (zelfstandig bronnenonderzoek). Voelt u zich nog te onzeker, dan kunt u voor extra begeleiding kiezen, waarbij u door de bronnen geleid wordt aan de hand van gerichte instructies (begeleid bronnenonderzoek). Na het begeleid bronnenonderzoek beantwoordt u de deelvragen en nadien beantwoordt u eveneens de hoofdvraag, om zo terug te komen op het hoofdtraject en de studietaak verder af te ronden. Naarmate u verder vordert in de studietaken en u zich (eventueel via het begeleid bronnenonderzoek) meer en meer bekwaamt in het zelfstandig bronnenonderzoek, zult u zien dat u voor

```
bijvoorbeeld de zevende studietaak geen behoefte meer heeft aan begeleid bronnenonderzoek. We gaan ervan uit dat u bij het afronden van de cursus, met deze werkwijze, de kennis en vaardigheden voldoende beheerst om ze later actief te kunnen gebruiken in uw verdere studie”.

Figuur 17 toont schematisch de basisstructuur van het Ewb volgens het VGO-model.

Figuur 17: Structuurschema Ewb volgens VGO-model
Van welke Studienet applicatie(s) maakt dit model gebruik?

Een cursus die is opgezet volgens het VGO-model kan worden uitgewerkt in Moodle of Blackboard. Elluminate en Emergo kunnen worden ingezet afhankelijk van het didactisch scenario. Alle bronmateriaal kan in principe worden ondergebracht in een centrale digitale bronnenbibliotheek op cursusniveau.

De voorbeeldcursus Bodem en water (N29211) maakt gebruik van Moodle voor het Ewb en van Emergo voor de Scheldecasus. Het bronmateriaal is schriftelijk of digitaal en deels schriftelijk en digitaal voor studenten beschikbaar. Het gaat om wetenschappelijke artikelen, rapporten, krantenartikelen, vakpublicaties, losse teksten, video’s, kaarten, tabellen, figuren, een ‘gereedschapskist’ met o.a. Google Earth, urls, etc, etc.

Figuur 18: Schermafdrukken van E-werkoek van cursus Bodem en water in Moodle
4.3.3 PGO E-werkboekmodel

Wat is de structuur van het Ewb?

In een cursus die is opgezet volgens het PGO-model krijgen studenten in de kern van het E-werkboek minimaal één, maar in de meeste gevallen een aantal studietaken voorgezet. In elke studietaak staat een probleem, fenomeen of gebeurtenis centraal. In de studietaak-introductie vindt de presentatie van een probleem in een probleemcontext plaats. In de studietaak-kern gaan studenten met het probleem aan de slag. In de studietaak-afsluiting ronden studenten een taak af. Figuur 19 toont in schema de basisstructuur van het Ewb volgens het PGO-model.

![Structuurschema Ewb volgens PGO-model](image)

Hoe studenten in de studietaak-kern aan de slag gaan hangt samen met de leerdoelen van de betreffende taak. In navolging van Dolmans en Snellen-Balendong (1999) beschrijven we vijf soorten taken, die bij de bestudering ervan elk een andere aanpak veronderstellen afhankelijk van de leerdoelen die aan de orde zijn.

Het Ewb stuurt en structureert de leerprocessen door een mix van de vijf typen PGO-taken aan de studenten voor te zetten. Voor de invulling van studietaak-kernen behandelen we hierna de vijf soorten taken.
De probleemtaak

Doelen
De probleemtaak is geschikt om studenten inzicht te laten verwerven betreffende allerlei verschijnselen, fenomenen of gebeurtenissen. Het gaat naast het laten vergaren van kennis vooral om het leren begrijpen en verklaren van de verschijnselen, fenomenen of gebeurtenissen en de onderliggende mechanismen.

Opzet en aanpak

Structuurschema
De zevensprong-aanpak vormt de basis voor de probleemtaak in een E-werkboekmodel van de OU. De presentatie van het verschijnsel, fenomeen of gebeurtenis vindt plaats in de studietaak-introductie. De studenten gaan er mee aan de slag door achtereenvolgens de zeven stappen van de zevensprong te zetten. De studietaak-kern stuurt deze stappen aan door een reeks specifieke activiteiten voor de studenten te programmeren. Onder andere afhankelijk van het niveau van de cursus en de ervaring die studenten hebben met het werken volgens de zevensprong, wordt elke stap verder of minder ver voorgestructureerd en geconcretiseerd met activiteiten en andere bouwstenen. (Zie voor activiteiten en andere bouwstenen: hst. 5)

[Diagram: Structuurschema studietaak-kern van probleemtaak]
De discussietaak

Doelen
De discussietaak is bij uitstek geschikt voor het laten verwerven van inzicht in verschillende standpunten en visies en voor het kritisch reflecteren op onderliggende uitgangspunten, normen en waarden. Dit taaktype is niet geschikt of bedoeld voor het leveren van oplossingen voor gestelde problemen.
Specifieke doelen kunnen zijn: leren standpunten te formuleren en verhelderen, leren argumenteren, redeneren, nuanceren; leren kritisch vergelijken; leren kritisch te luisteren en assertief deel te nemen aan discussies (je laten horen).

Opzet en aanpak
De discussietaak is alleen geschikt voor uitvoering in groepen. De discussies vinden plaats op vaste tijdstippen (synchroon) via bijvoorbeeld een reeks geprogrammeerde Elluminate-sessies, maar kunnen ook asynchroon met behulp van andere social media plaatsvinden, bijvoorbeeld via fora of discussiegroepen in Blackboard of Moodle. Uiteraard kunnen ook andere toepassingen buiten de officiële ELO van de OU ingezet worden, zoals Skype, Twitter, Weblogs, Facebook, LinkedIn.

Aansturing van het onderwijs gebeurt (net als bij de probleemtaak) in het Ewb van een cursus. In de studietaak-introductie wordt een proces, fenomeen of gebeurtenis gepresenteerd en geproblematiseerd. Na een voorbereidende stap waarin studenten zich voorbereiden op de discussie, gaat de discussie van start met een eerste discussieronde waarin uitwisselen, inventariseren en vergelijken van standpunten en visies centraal staat en wordt afgesloten met het samenvatten van standpunten en nadrukkelijk ook de punten van overeenstemming en verschil. Na de eerste ronde volgt een time-out waarin elke deelnemer zich kan bezinnen op het vervolg. De time-out kan ook gebruikt worden voor het zoeken naar verdere onderbouwing in de literatuur. In de tweede discussieronde staat het inbrengen van gevonden onderbouwing centraal. Wetenschappelijk onderbouwde en naïeve argumentaties en standpunten worden uitgefilterd. De tweede ronde kan worden afgesloten met het trekken van eindconclusies, al dan niet een consensus, het formuleren van standpunten en verschillen daarin, etc. waarna de studietaak wordt afgerond. Een andere mogelijkheid is dat er een tweede time-out wordt genomen ter voorbereiding op een derde discussieronde. En zo verder.

Aantal en duur van de discussierondes zijn afhankelijk van onder andere de inhoudelijke complexiteit van de kwestie die ter discussie wordt gesteld, maar ook van bijvoorbeeld de beschikbare tijd en begeleidingsmogelijkheden. De omvang van de taak (studielast) is daarmee een implementatievariabele die in het ontwerp van een cursus behoort te worden vastgelegd.
Moderatie van de discussie is essentieel. Dit kan gebeuren door een docent of door een of meerder studenten. Op dit begeleidingsaspekt gaan we hier niet verder in.

In de studietaak-afsluiting ronden studenten ten slotte de studietaak af met bijvoorbeeld een individuele positiebepaling (ten opzichte van het discussieonderwerp) die ze vastleggen in een korte notitie, of met een reflectieverslag (waarin ze terugkijken op de doelen van de studietaak en/of het procesverloop) dat ze opnemen in hun portfolio.

Structuurschema
Het zal duidelijk zijn dat de zevensprong niet past bij de discussietaak. Minimaal zullen er een discussie-opstart, twee discussierondes en een afronding voorzien zijn. In stap 1 bereiden studenten zich inhoudelijk voor op de discussie naar aanleiding van de probleempresentatie in de studietaak-introductie. In stap 2 gaat de eigenlijke discussie van start. Afhankelijk van gekozen opzet initieert een docent of een student de discussie bijvoorbeeld

21 Meer inspiratie opdoen? Zie bijvoorbeeld www.21edingen.nl
door het opstellen van een tijdsplanning of het leveren van een eerste discussiebijdrage. Alle ingeschrevenen van de cursus worden uitgenodigd om mee te doen. Vervolgens verloop de studietaak-kern in een iteratie van discussierondes en time-outs. In de laatste stap rondt de modererende docent of student de discussie af.

Figuur 21: Structuurschema studietaak-kern van discussietaak
De strategietaak

Doelen

Opzet en aanpak
Bij voorkeur wordt in groepjes aan de taak gewerkt. Afhankelijk van de opzet kan ook eventueel individueel aan de taak gewerkt worden.
Deze taak verloopt bij voorkeur via een aantal vaste stappen. In de studietaak-introductie vindt om te beginnen een probleempresentatie plaats. Dit betreft een ‘open einde’ situatie die eindigt met de vraag “Wat nu?” of “Hoe nu verder?”
Deze vraag wordt herhaald in de eerste stap van de studietaak-kern: het uitvoeren van een nadere analyse van de gegeven situatie om onduidelijkheden te verhelderen en te zoeken naar aanknopingspunten voor verder handelen. De tweede stap is dan gericht op het inventariseren van handelingsalternatieven en het onderbouwen van deze alternatieven. De derde stap bestaat uit het bereiken van overeenstemming over een plan van aanpak. (NB. Deze derde stap kan vorm krijgen als een in de strategietaak ingebedde ‘discussietaak’).
In de vierde en laatste stap moet de rapportage over het plan van aanpak voorbereid worden. Rapportage kan in schriftelijke vorm gebeuren, maar ook in de vorm van een presentatie.
In de studietaak-afsluiting vindt de feitelijke rapportage of presentatie plaats. Dit kan individueel of groepsgewijs. Rapportage of presentatie is tevens het ‘toetsmoment’ van de strategietaak.
NB: Uitvoering van een opgesteld plan van aanpak behoort niet tot de strategietaak, maar komt aan de orde in de toepassingstaak (zie hierna).

Structuurschema

Figuur 22: Structuurschema studietaak-kern van strategietaak
De toepassingstaak

Doelen
In een toepassingstaak gaat het om de toepassing van kennis, inzicht en vaardigheden in een praktijksituatie of simulatie. Het is goed mogelijk om de toepassingstaak te laten volgen op een strategietaak waarbij in de toepassingstaak nagegaan wordt of de gekozen strategie of aanpak inderdaad tot veronderstelde resultaten leidt. Kwaliteitscontrole of evaluatie zijn expliciet in het geding. Kritische reflectie op de eigen taakuitvoering en op de waarde van eerder verworven kennis, inzicht en vaardigheden speelt een belangrijke rol.

Opzet en aanpak
Bij voorkeur wordt in groepjes aan de taak gewerkt. Afhankelijk van de opzet kan ook eventueel individueel aan de taak gewerkt worden.
Deze taak verloopt volgens een aantal stappen. In de studietaak-introductie vindt de taakpresentatie plaats inclusief de mogelijke handelingsperspectieven. Geïntegreerd aan deze perspectieven vindt verwijzing naar noodzakelijk geachte voorvinding plaats.
In stap 1 van de studietaak-kern vindt de analyse plaats van de taak. Onduidelijkheden moeten opgehelderd worden.
In stap 2 wordt de toepassing gedetailleerd en concreet voorbereid.
Stap 3 betreft de uitvoering van de taak.
In stap 4 wordt de uitvoering geëvalueerd. Wat ging er goed en waarom? Wat ging er fout en waarom?
In stap 5 ten slotte vindt reflectie op de uitvoering van de toepassingstaak plaats: Wat heeft de taakuitvoering geleerd? Wat kan een volgende keer beter, hoe en waarom? Wat zijn de leerpunten?
In de studietaak-afsluiting kan net als bij de strategietaak rapportage of presentatie plaatsvinden, waarbij het product dat in de toepassingstaak tot stand is gebracht centrale aandacht kan krijgen en kan worden teruggekoppeld naar de leerdoelen van de taak.

Structuurschema

![Structuurschema]

Figuur 23: Structuurschema studietaak-kern van toepassingstaak
Ontwerpen met modellen

De studietaak

Opmerkingen

Voor alle typen problemen of taken geldt dat ze

- moeten aansluiten bij het veronderstelde voorkennisniveau van de studenten. Taken moeten niet te moeilijk, maar ook niet te gemakkelijk zijn;
- uitdagend genoeg moeten zijn om studenten aan te zetten er mee aan de slag te gaan;
- zo veel als maar mogelijk is door studenten als relevant en interessant ervaren kunnen worden.

Bij het ontwerpen en ontwikkelen van PGO-taken zet men de volgende stappen:
1. Bepaal welke doelen met de taak bereikt moeten worden;
2. Bepaal op basis van de doelen het geschiktste taaktype;
3. Werk de taak uit en kies de geschiktste media.

De trits probleemtaak – strategietaak – toepassingstaak biedt veel mogelijkheden om ingewikkelde materie aan de orde te stellen. Soms zal het passen om deze drie taken opeenvolgend in een cursus in te plannen. Soms zullen meerdere cursussen nodig zijn om een complete trits te kunnen afwerken. Een en ander is vooral afhankelijk van de complexiteit van de problematiek of inhoud.

Emergo biedt goede mogelijkheden om de combi van probleemtaak – strategietaak – toepassingstaak uit te werken.
Het is belangrijk altijd eerst een gedetailleerd ontwerp te maken waarin alles in voldoende mate is uitgewerkt: alle taken en activiteiten voor de student, alle rollen en taken van begeleiders, alle benodigde materialen, feedbackvoorschriften, etc.

Van welke Studienet applicatie(s) maakt dit model gebruik?

Een cursus die is opgezet volgens het PGO-model kan worden uitgewerkt in Moodle of Blackboard. Elluminate en Emergo kunnen worden ingezet afhankelijk van het didactisch scenario.
Het PGO-model is bij uitstek geschikt om in te zetten in combinatie met samenwerkend leren. Samenwerken aan het uitpluizen van problemen kan met behulp van Elluminate in afstandsonderwijs goed worden ondersteund. Andere social media die de toepassing van dit model kunnen ondersteunen zijn bijvoorbeeld Delicious om samen een verzameling bookmarks aan te leggen en bij te houden, of Endnote Web om op een gemakkelijke manier een (gezamenlijk) bronnenbestand bij te houden en te beheren.

Meer informatie?

Uitgebreide informatie over het PGO-model is te vinden in onder andere:

- WIKIPEDIA: nl.wikipedia.org/wiki/Probleemgestuurd_onderwijs.
4.3.4 Casus E-werkboekmodel

Een casus stelt een praktijkgeval centraal in het onderwijs. Wanneer een cursus is opgebouwd rond één centraal praktijkgeval of slechts enkele kleinere praktijkgevallen, dan is het Casus Ewb-model geschikt. Een praktijkgeval presenteert een probleem, situatie of gebeurtenis als een uitsnede uit de praktijk. Een praktijkgeval is op zichzelf nog geen onderwijs. Door een praktijkgeval te relateren aan leerdoelen en daarmee samenhangende leeractiviteiten ontstaat een casus en is er sprake van de casus als leermiddel. Deze opvatting over casussen is in lijn met de definitie van Lkoundi en Van Woerden22 van een casus als “een leermiddel dat een probleem, situatie of gebeurtenis beschrijft vanuit de werkelijke context en is gestructureerd vanuit de leerdoelen”.

Van Vilsteren et al.23 constateren een grote spraakverwarring omtrent het begrip casus. Zij stellen voor te werken vanuit de definitie “Een casus is in zijn meest algemene zin een beschrijving van een levenssechte situatie, meestal een probleemsituatie die een student ook later in de beroepsoefening tegen kan komen. Een casus bevat allerlei soorten informatie uit verschillende informatiebronnen die nodig is om de situatie te begrijpen en/of het probleem op te lossen. Die informatie kan, afhankelijk van de leerdoelen, meer of minder volledig, meer of minder toegankelijk, goed of minder goed geordend zijn”.

Voor het typeren van casussen presenteren Van Vilsteren et al. zes variabelen:
1. Authenticiteit: Is het praktijkgeval echt gebeurd of door de ontwikkelaar geheel verzonnen?
2. Compleetheid: Wat krijgen studenten voorgezet? Wordt er van het praktijkgeval alleen een beschrijving gegeven? Wordt er een beschrijving van het praktijkgeval gegeven met het daarin spelende probleem? Of wordt er een beschrijving van het praktijkgeval, met het daarin spelende probleem en inclusief de gerealiseerde oplossing gepresenteerd?
3. Presentatie: Wordt het praktijkgeval gestructureerd en overzichtelijk gepresenteerd, bijvoorbeeld chronologisch? Of krijgt de student een grote hoeveelheid ongeordend materiaal voorgezet?
4. Openheid: Is er voor het praktijkgeval maar één goede oplossing mogelijk, of zijn er verschillende oplossingen denkbaar en verdedigbaar?
6. De doelstellingen en functies van de casus: Wat moeten studenten van de casus kunnen leren? Een aan welke didactische functies geeft de casus invulling?

De omvang van casussen kan erg verschillen. Dat loopt van heel klein tot heel groot. Een casus gebaseerd op een simpel verzonnen voorval kan heel klein zijn en fungeren als illustratie bij en ter verwerking van leerstof. Daarentegen zal een casus over bijvoorbeeld de ontwikkeling van de Betuwelijn of het in de markt zetten van een nieuw product zoals de Senseo koffiemachine, gepresenteerd en gedocumenteerd zijn in een omvangrijk dossier met schriftelijke bronnen en een ruime verzameling multimediaal materiaal.

Past men relatief kleine casussen toe als illustraties dan zullen ze vrijwel altijd worden ingepast in een van de andere E-werkboekmodellen. Het Casus Ewb-model is eigenlijk alleen voor grote casussen bedoeld. De keuze voor dit model is uiteraard afhankelijk van de leerinhoud en de doelstellingen. Het ligt voor de hand om bij het uitwerken van een didactisch scenario dit model te overwegen en, als wordt vastgesteld dat het Casus-model geschikt is, het praktijkgeval als start punt te nemen voor de selectie van verdere bronnen en het bedenken van instructie- en leeractiviteiten. Afhankelijk van doelen kan men in de opzet van casussen variëren op de hiervoor genoemde 6 variabelen, maar ook op de dimensie ‘individualiteit – samen’.

Wat is de structuur van het Ewb?
Centraal in een cursus die is opgebouwd rond een of enkele casussen staat het E-werkboek. Het Ewb legt de routes vast die een student kan volgen. In en naast het E-werkboek krijgen studenten allerlei materialen en middelen concreet aangeboden of ze worden er naar verwezen.

Het Ewb bestaat uit een introductie – een kern – en een afsluiting.
De kern van het Ewb is opgebouwd uit één of meer casussen.
Binnen elke casus worden het praktijkgeval, de digitale bronnen en de activiteiten in samenhang met elkaar gepresenteerd. Allerlei typen bronmateriaal kunnen in de cursussite worden ingepast, maar daarnaast kan uiteraard materiaal ook in andere media aangeboden worden (handboek, tekstboek of reader).

Toetsen worden in dit model vaak in een casus geïntegreerd, maar ook ‘losse toetsing’ is mogelijk, bijvoorbeeld in de vorm van een speciale toetscasus (vgl. een conventioneel probleem in het 4C/ID-model) of als een meer traditionele toets. Vorm van toetsing hangt uiteraard samen met en is afhankelijk van de leerdoelen.

![Structuurschema Ewb volgens Casusmodel](image)

Van welke Studienet applicatie(s) maakt dit model gebruik?
Een cursus die is opgezet volgens het Casusmodel kan worden uitgewerkt in Moodle of Blackboard. Elluminate kan worden ingezet voor groepssessies als deze zijn voorzien in het didactisch scenario. Emergo is bij uitstek geschikt om complexe multimediale casussen mee aan te bieden.

In dit katern gaan we niet in op het ontwikkelen van cases.
In de volgende bronnen is daarover wel informatie te vinden.
Meer informatie?
Uitgebreide informatie in relatie tot het casusmodel is te vinden in onder andere:

- De Emergo-website: www.emergo.cc.
4.3.5 Project E-werkboekmodel

Een wat andere, formelere insteek is te vinden bij Verhaar (2008). Hij gaat uit van projecten als “een werk, uitgevoerd door een tijdelijke organisatie van mensen, meestal uit verschillende disciplines, om een vooraf vastgesteld doel te bereiken, binnen vooraf vastgestelde randvoorwaarden” (p.12).

Voorstanders van projectonderwijs benadrukken dat studenten als ze bezig zijn in projecten veel opsteken van de inhoudelijke kant van het project, maar zeker en vooral ook veel andere dingen leren, zoals organiseren, leiding geven, vergaderen, een planning maken en die opvolgen. Dus een reeks algemene (beroeps-)vaardigheden.

Een mooi voorbeeld van een (omvangrijk) project is het als een groep studenten van een technische universiteit een door zonneenergie aangedreven voertuig moet ontwikkelen om ermee dwars door Australië te racen. Veel samenwerken, veel technische kennis toepassen, op tijd klaar zijn, de logistiek van deelname aan de wedstrijd, het verblijf en de catering, en nog veel meer. Kenmerkend: het doel is duidelijk, termijnen en randvoorwaarden zijn gegeven, de uitkomst en het resultaat staat niet op voorhand vast. Er is veel multidisciplinaire kennis en vaardigheid nodig om het project tot een goed einde te brengen.

Minder complexe voorbeelden: enkele studenten moeten samen een werkend stukje software ontwikkelen, enkele studenten moeten samen een (virtuele) tentoonstelling organiseren, een student moet binnen een school een nieuwe geschiedenismethode invoeren.

Al deze voorbeelden vragen om een aanpak van projectmatig werken.

Met het Project E-werkboekmodel kunnen cursussen worden opgezet waarvan het hoofddoel is dat studenten zo zelfstandig mogelijk eerder verworven kennis en vaardigheden leren toepassen op ‘echte klussen’ die representatief zijn voor hun latere beroepspraktijk. Het leren werken volgens een projectmatige aanpak en daar ervaring mee opdoen is altijd de tweede hoofddoelstelling van een projectcursus. In termen van de Dublin descriptoren gaat het bij projecten om het geïntegreerd toepassen van kennis en inzicht, naast oordeelsvorming, communicatie en leervaardigheden (vgl. bijlage 2).

Wat is de structuur van het Ewb?

Centraal in een cursus volgens het projectmodel staat het E-werkboek. Het E-werkboek is opgezet volgens de stapsgewijze aanpak van projectmatig werken. Deze stapsgewijze aanpak is inhoudelijk leeg. Elk specifiek project vraagt om een specifieke inhoudelijke invulling, die uiteraard afhankelijk is van het vakgebied, de doelen en de thematiek. Algemene en specifiek vakinhoud kan in de cursus zijn ingebouwd, maar specifiek benodigde inhoud hoeft niet gegeven te zijn. Mate van inhoudelijk vulling is een implementatievariabele.
waarover in het didactisch scenario afspraken kunnen worden vastgelegd. Naast het Ewb kunnen studenten alle materialen en middelen gebruiken die ze zelf nodig vinden.

Het Ewb bestaat net als bij alle andere modellen uit een introductie, een kern en een afsluiting. De kern is opgebouwd uit studietaken waarbij in elke studietaak een stap van de projectmatige aanpak wordt doorlopen. Uit de literatuur betreffende projecten en projectmatig werken spreekt grote consensus over de fasering van het proces.

Stap 1: Initiatiefase: eerste oriëntatie op het projectidee en het globale na te streven resultaat, resulterend in overeenstemming over de projectopdracht.

Stap 2: Definitiefase: grondige analyse van de projectopdracht, doelen, randvoorwaarden, eisen en risico’s, resulterend in een plan van aanpak.

Stap 3: Ontwerp fase: plan van aanpak uitwerken, oplossingen inventariseren, kiezen of ontwerpen, resulterend in een ontwerp waarin de beste oplossing voor het probleem is vastgelegd en dat samen met de voorgestelde weg om die oplossing te bereiken is vastgelegd in het projectplan.

Stap 4: Voorbereidingsfase: alles wat nodig is om het projectresultaat te gaan realiseren ‘klaarzetten’, resulterend in een situatie waarin alle nodige middelen, materialen en afspraken met personen en organisaties zijn geregeld, zodat met daadwerkelijke realisatie van het projectdoel begonnen kan worden.

Stap 5: Realisatiefase: het projectresultaat daadwerkelijk realiseren, het resultaat testen en eventueel bijstellen, uiteindelijk uitmondend in het opleveren van het gerealiseerde product of de dienst aan de opdrachtgever.

Stap 6: Nazorg: Afronden van project, eindrapportage verzorgen, projectarchief overdragen, opheffen projectgroep, afspraken maken over eventueel onderhoud van het projectresultaat, resulterend in een afgesloten project.

Deze stappen volgend bestaat de kern van het Ewb uit zes studietaken waarvan de feitelijke invulling per project kan verschillen, onder andere afhankelijk van het domein en de ‘klus’ die in het project aan de orde is. Bij de invulling van de studietaken onderscheiden we twee varianten. In de ene variant is met de studietaken alleen de fasering in hoofdstappen gegeven en moeten de studenten zelf de daarbinnen te zetten deelstappen een plaats geven en uitwerken. Activiteiten en bijv. studeeraanwijzingen in de studietaak-kern kunnen daar aanwijzingen, begeleiding en ondersteuning bij bieden. Deze variant is vooral geschikt als ervan uitgegaan kan worden dat studenten al (tot op zekere hoogte) projectmatig kunnen werken. In de leerdoelen zal bij deze variant de nadruk vooral liggen op vakinhoud en het te realiseren projectresultaat en het zelfstandig toepassen van projectmatig werken (zie figuur 25).

Figuur 25: Structuurschema Ewb volgens Projectmodel (variant 1)
In de andere variant zijn de projectstappen gedetailleerd ingevuld met een reeks deelstappen. In het schema (figuur 26) zijn voor deze variant bij wijze van voorbeeld de studietaken 1 en 2 verder ingevuld. Deze variant is vooral geschikt als de student nog niet bekend is met projectmatig werken en het leren werken op een projectmatige manier tot de doelstellingen van een cursus behoort.

Van welke Studienet applicatie(s) maakt dit model gebruik?
Een cursus die is opgezet volgens het Project-model kan worden uitgewerkt in Moodle of Blackboard. Vanwege het ‘open-eind-karakter’ van projecten ligt toepassing van Emergo niet voor de hand. Elluminate kan worden ingezet afhankelijk van het didactisch scenario. Bronmateriaal kan in principe worden ondergebracht in een centrale digitale bronnenbibliotheek op cursusniveau of in schriftelijke vorm beschikbaar worden gesteld. Een voorbeeld van een cursus volgens het Project E-werkboekmodel is de cursus Project onderwijswetenschappen (O35421). In figuur 27 staan ter illustratie twee schermafdrukken van deze cursus. De eerste toont de cursus in Blackboard 9.1, de tweede de pilotomgeving ‘OpenU’ (portal.ou.nl).
Ontwerpen met modellen

Figuur 27: Schermafdrukken van E-werkboek van cursus Project onderwijswetenschappen in Blackboard en ‘OpenU’

Opmerkingen

Het Project E-werkboek is inhoudelijk leeg, tenzij het projectmatig werken zelf de doelstellingen en de inhoud van de cursus vormen.

Het model biedt een kader waarbinnen studenten zelf hun inbreng qua thematiek kunnen hebben. Het model kan ook inhoudelijk heel specifiek gevuld worden om alle studenten een keer hetzelfde project te laten doorlopen, bijvoorbeeld het ontwikkelen van een Android app of een webwinkel.

Een bijzonder project is de scriptie of thesis. De hoofdaannemer van zo’n project is de student. Zij of hij is de projectleider. Samenwerking is beperkt, maar soms moet toch met veel stakeholders rekening worden gehouden. De projectstappen zullen specifiek ingevuld moeten worden volgens bijvoorbeeld de empirische of de regulatieve cyclus.
Ontwerpen met modellen

Meer informatie?
Uitgebreide informatie in relatie tot het projectmodel is te vinden in onder andere:

- WIKIPEDIA: nl.wikipedia.org/wiki/Projectonderwijs.
5 Bouwstenen voor modellen: activiteiten en andere objecten

Om E-werkboeken te bouwen beschikken we over Ewb-modellen (zie hst. 4). Door toepassing van een Ewb-model krijgt een elektronische cursusomgeving allereerst een zo helder mogelijke structuur. Binnen die structuur worden de overige didactische functies gerealiseerd.

Een Ewb-model is in feite een basisopzet voor de structuur van een Ewb dat verder invulling gegeven kan worden met behulp van diverse bouwstenen die verschillen wat betreft functie en uitvoering. Elk type bouwsteen heeft eigen kenmerken. Sommige bouwstenen passen goed bij elkaar, andere niet of minder.

De inhoudelijke kant van het onderwijs krijgen studenten aangeboden als een verzameling bronmaterialen en/of een aantal verwijzingen naar vindplaatsen van digitaal materiaal. Instructie over wat ze met die inhouden moeten doen vinden ze in het Ewb. In de schematische voorstellingen van de verschillende Ewb-modellen zijn op het diepste, meest concrete niveau de bouwstenen ‘activiteit’ te vinden. Met activiteiten vindt dus de directe aansturing van de leeractiviteiten plaats. Van den Brink et al. (1990) delen deze activiteiten in naar gelang de functies die ze kunnen hebben:

- Relevante voorkennis activeren
- Belangstelling opwekken
- Aandacht richten op specifieke aspecten
- Meenemen in het denkproces van de auteur
- Aanzetten tot herhalen of samenvatten
- Bevorderen van kritische houding t.o.v. aangebodene
- Bevorderen van leren studeren
- Laten toepassen van geleerde
- Laten verwerken van geleerde
- Toetsen van geleerde
- Aanzetten tot het uitvoeren van een taak.

Uit deze opsomming kan men afleiden dat heel veel variatie in het onderwijs kan worden aangebracht met behulp van verschillende typen activiteiten.

Waar in de hiervoor gepresenteerde modellen activiteiten zijn aangeduid, kunnen dus in een echt Ewb allerlei bouwstenen geplaatst worden met een rijke variatie aan labels. Wat in de schematische voorstellingen ‘activiteit’ heet representeert een bijna oneindige verzameling van zeer diverse objecten die in de werkelijkheid van het onderwijs met elkaar verbonden zijn tot zinvolle, betekenisvolle onderwijsbouwwijken, de studietaken of deeltaken.

De bouwstenen heten in de onderwijspraktijk dan: vraag, opdracht, opgave, taak, leesopdracht, toetsitem, instructie, samenwerktak, werkstuk, etc, etc, etc.

Figuur 28 geeft een (overigens niet uitputtende) opsomming van mogelijke invullingen van het blokje ‘activiteit’.

Ontwerpen met modellen

<table>
<thead>
<tr>
<th>Vraag</th>
<th>Werkstuk</th>
<th>Schrijfsak</th>
<th>Toetsitem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opdracht</td>
<td>Docent</td>
<td>Leesopdracht</td>
<td>Kijkopdracht</td>
</tr>
<tr>
<td>Opgave</td>
<td>Verkenningsoopdracht</td>
<td>Instructie</td>
<td>Oefenvraag</td>
</tr>
<tr>
<td>Taak</td>
<td>Reflectieopdracht</td>
<td>Samenwerkopdracht</td>
<td>Facultatieve taak</td>
</tr>
</tbody>
</table>

Figuur 28: Activiteiten in de kern van studietaken en deeltaken

In een cursus zijn op het niveau van de allerkleinste bouwstenen naast de echte activiteiten nog een ander soort bouwstenen te vinden. Deze andere bouwstenen zorgen ervoor dat de eigenlijke activiteiten in een logische volgorde en in samenhang worden gepresenteerd. Voorbeelden van deze andere bouwstenen zijn inleidingen, uitleg, toelichtingen, voorbeelden, verbindende teksten, een introducterend videofragment, etc. Deze bouwstenen vormen de schakel tussen de ene en de andere activiteit, ze bedden activiteiten, ze geven structuur, ze stimuleren of motiveren en ze presenteren extra inhoud aan de studenten.

Figuur 29 geeft een (weer niet uitputtende) opsomming van deze andere soort bouwstenen.

<table>
<thead>
<tr>
<th>Inleidende tekst</th>
<th>Inleid. beeldmateriaal</th>
<th>Voorbeeld</th>
<th>Feedback</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bindtekst</td>
<td>Toelichting</td>
<td>Video(fragment)</td>
<td>Gevalbeschrijving</td>
</tr>
<tr>
<td>Afsluitende tekst</td>
<td>Vervanging</td>
<td>Studeeraanwijzing</td>
<td>Casuspositie</td>
</tr>
<tr>
<td>Audio(fragment)</td>
<td>Uitleg</td>
<td>Interne link</td>
<td>Externe link</td>
</tr>
</tbody>
</table>

Figuur 29: Andere bouwstenen in de kern van studietaken en deeltaken

In strikte zin zetten deze andere bouwstenen niet aan tot leeractiviteiten, maar ze impliceren wel activiteit van de student, bijvoorbeeld: *Lees* de uitleg voordat je met een opdracht aan de slag gaat, *Neem kennis van* de toelichting voordat je verder gaat met de verkenningsoopdracht, *Bestudeer* het voorbeeld, *Lees* de ‘bindtekst’ waarin de docent de overgang van de ene activiteit naar de andere activiteit inzichtelijk maakt, *Vergelijk* de gegeven feedback met de eigen antwoorden of de eigen uitwerking, *Neem deel aan* of *Bekijk* een Elluminate-sessie, etc.

Kortom, waar in de modellen ‘activiteit’ staat zullen in de concrete invulling van de E-werkboeken twee soorten bouwstenen elkaar min of meer afwisselen: bouwstenen die de student direct aanzetten tot eigenlijke leeractiviteiten en andere bouwstenen die er voor zorgen dat het E-werkboek als een samenhangende eenheid overkomt door alle onderdelen in verband met elkaar te brengen en in relatie tot elkaar te presenteren.

Een voorbeeld van een mogelijke invulling van een studietaak staat in figuur 30.
Hierna worden de activiteiten vanuit verschillende invalshoeken nader bekeken. Door creatief te spelen met alle mogelijkheden en beperkingen die zich vanuit deze invalshoeken aandienen kan men de doelen van een cursus omzetten in activiteiten of activiteitenreeksen.

5.1 Activiteiten: leerdoelen en werkwoorden

Activiteiten die men in de E-werkboeken voor studenten inplant zijn normaal gesproken direct gerelateerd aan de doelstellingen die ermee worden nagestreefd. De doelstellingen zijn voor de studenten als het ware in activiteiten ‘vertaald’. Door het uitvoeren van activiteiten werken studenten aan het bereiken van de doelstellingen.

Om de juiste activiteiten te kunnen inplannen is het handig te weten dat doelstellingen ingedeeld kunnen worden naar de soort kennis die erin aan de orde is, en naar het niveau waarop de studenten geacht worden de aan de orde zijnde kennis te gaan beheersen.

Qua soorten kennis onderscheiden we hier: kennis van feiten en begrippen (factual knowledge), kennis van relaties, structuren en theorieën (conceptual knowledge), en kennis van methoden, procedures en vaardigheden (procedural knowledge). Qua beheersingsniveaus worden onderscheiden: weten, begrijpen, toepassen, analyseren, evalueren en creëren. In matrix levert dit tabel 3 op.

<table>
<thead>
<tr>
<th></th>
<th>weten</th>
<th>begrijpen</th>
<th>toepassen</th>
<th>analyseren</th>
<th>evalueren</th>
<th>creëren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factual knowledge: Feiten en begrippen</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Conceptual knowledge: Relaties, structuren en theorieën</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Procedural knowledge: Methoden, procedures en vaardigheden</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
</tbody>
</table>
‘Activiteiten’ kunnen in overeenstemming met de cellen van de matrix ingedeeld worden. Bijvoorbeeld, activiteiten kunnen gericht zijn op het verwerven van kennis van feiten en begrippen (1), het oefenen in het toepassen van een bepaalde methode (15), het leren kennen van een bepaalde theorie (7) of het dieper doorgronden van die theorie (8), het analyseren (16) of evalueren (17) van een bepaalde procedure. Hier gaan we niet verder in op de leerdoelenmatrix.

In aanvulling op het bovenstaande is het nodig ook het grotere kader dat gegeven is met de Dublin descriptoren (zie bijlage 2) in de beschouwingen te betrekken. Deze indicatoren beschrijven het einddoel dat studenten op respectievelijk bachelor- of masterniveau moeten bereiken voor wat betreft kennis en inzicht, toepassen van kennis en inzicht, oordeelsvorming, communicatie en leervaardigheden. In het curriculum of een curriculumbeschrijving moeten doelstellingen en operationalisaties daarvan voor deze vijf gebieden zijn vastgelegd. Daarnaast moeten er indicaties gegeven zijn over welke aspecten van de Dublin descriptoren en dus welke doelstellingen in welke cursussen en tot op welke beheersingsniveaus aan de orde moeten komen. In de ontwikkelopdracht voor een specifieke cursus moet hierover informatie zijn te vinden. Tijdens het opstellen van een cursusplan kan vervolgens in het didactisch scenario worden uitgewerkt welke concrete activiteiten voor studenten zullen worden ingepland om het laten bereiken van de doelstellingen te faciliteren. Naast ‘harde vakinhoud’ kunnen attitudeaspecten, meer algemene academische vaardigheden en leervaardigheden de noodzakelijke aandacht krijgen.

Verschillen tussen ‘activiteiten’ komen vanzelfsprekend tot uiting in de inhouden die aan de orde zijn, maar daarnaast ook en vooral in de werkwoorden die docenten gebruiken om studenten tot bepaalde activiteiten aan te zetten. Elke activiteit bevat namelijk naast een inhoud ten minste ook een werkwoord dat betrekking heeft op een beoogde activiteit. Bijvoorbeeld:

Opdracht:
“Lees het hoofdstuk over ‘Brand management’, streep alle begrippen aan die u niet kent en zoek daarvan de betekenis op. Voeg de door u geselecteerde begrippen toe aan de woordenlijst van dit hoofdstuk en geef ook de door u gevonden betekenis”.

Studeeraanwijzing:
“Bekommer u niet om dubbele woorden in de woordenlijst. Later gaat u samen met enkele medestudenten de lijst opschonen waarbij u samen de beste betekenis selecteert”.

Deze activiteit past in de cel Weten x Feiten en begrippen (Tabel 3, cel 1).

Dezelfde inhoudelijk bron kan echter ook worden ingezet gekoppeld aan een heel andere activiteit in het onderwijs. Bijvoorbeeld:

Opdracht:
“Lees het hoofdstuk over ‘Brand management’, kies een van de twee methoden die erin met elkaar worden vergeleken en beargumenteer waarom de door u gekozen methode beter of slechter is dan de andere methode.

Schrijf uw argumentatie op in maximaal 400 woorden.

Upload het document met uw argumentatie in de cursuswebsite. Na het uploaden ontvangt u feedback waarmee u uw eigen argumentatie kunt vergelijken”.

Deze activiteit past in de cellen Analyseren en Evalueren x Relaties, structuren en theorieën (Tabel 3: cellen 10 en 11).

Elke activiteit of reeks samenhangende activiteiten, of ze nu gepresenteerd worden onder het label taak, vraag, opdracht of zelftoets, bestaat uit drie elementen:

1. een aanduiding van wat de student moet doen, wat er van haar of hem verwacht wordt.
2. een aanduiding van wat de student daarbij nodig heeft of kan gebruiken (Welk bronmateriaal? Welke hulpmiddelen? Eventuele samenwerking met andere studenten of ondersteuning van een docent?).
3. een specificatie van wat de activiteit geacht wordt op te leveren (Product).

Taken of opdrachten kunnen enkelvoudig zijn, maar ook zijn samengesteld uit meerdere aan elkaar gekoppelde activiteiten. Bij een enkelvoudige taak is er één en bij takenreeksen zijn er meerdere werkwoorden in het spel.

Voorbeelden van enkelvoudige taken of opdrachten:

Opdracht met werkwoord ‘lezen’:
“Lees XXX”
Waarbij dat wat gelezen moet worden nader is gespecificeerd, bijvoorbeeld een boek, een hoofdstuk, een artikel, een webpagina.

Opdracht met werkwoord ‘bekijken’:
“Bekijk XXX aan de hand van de volgende aandachtspunten”
Waarbij dat waarnaar gekeken moet worden, bijvoorbeeld een videoproductie, een structuurschema of een schilderij, en de aandachtspunten gespecificeerd moeten zijn.

Opdracht met werkwoord ‘analyseren’:
“Analyseer XXX”
Waarbij dat wat geanalyseerd moet worden nader wordt gespecificeerd, bijvoorbeeld een gedicht, een processchema, een routebeschrijving, de code van een computerprogramma.

Zetten we de drie laatste voorbeelden van taken of opdrachten af tegen de omschrijving van activiteiten dan valt op dat het derde element, een specificatie van wat de activiteit geacht wordt op te leveren, het product in de taak- of opdrachtformulering ontbreekt. Dit soort activiteiten nodigt uit ze over te slaan. Anders gezegd, ze zouden moeten worden aangevuld met een productspecificatie. Daarmee is niet gezegd dat het betreffende product ook altijd moet worden ingeleverd of geregistreerd. Producten kunnen ook alleen voor de student zelf bedoeld zijn, bijvoorbeeld:
“Houd een logboek bij van het proces, zodat u in de laatste studietaak goed bent voorbereid op de daar gevraagde reflectie op het proces”.

Om studenten concreet en specifiek aan te zetten tot leeractiviteiten is het aangewezen om de instructies volledig uit te werken. Dit betekent dat instructieactiviteiten in het OU-onderwijs meestal ‘samengesteld’ zullen zijn, dat wil zeggen dat er meerdere werkwoorden gebruikt worden in combinatie met overige objecten.

Een voorbeeld van een samengestelde activiteit of activiteitenreeks:
In de cursus Bodem en Water (Natuurmilieuwetenschappen) is een opdracht te vinden waarbij met de werkwoorden ‘maken’, ‘uitbreiden’, ‘nagaan’, ‘lezen’ en nogmaals ‘maken’ in combinatie met gerelateerde materialen en andere bouwstenen (teksten, illustraties, extra uitleg, schema’s) studenten door een reeks activiteiten worden geledost. Het product dat studenten opleveren is een conceptmap.

Een schematische voorstelling van deze taak staat in figuur 31.
Ontwerpen met modellen

| Leesopdracht | Maak schema | Extra bron | Breid schema uit | Ga consequenties na | Feedback | Voorbeeld | Maak conceptmap | Afsluitende tekst |

\[\text{Figuur 31: Opdracht als complexe samengestelde activiteit}\]

Ander voorbeeld, met de werkwoorden ‘lezen’, ‘maken’ en ‘uitwerken’:
“\textit{Lees XX en YY.}
\textit{Maak} een schema van de gevonden verschillen en overeenkomsten tussen XX en YY.
\textit{Werk} uw schema \textit{uit} tot een werkstuk van maximaal 500 woorden”.

\section{5.2 Activiteiten: open of gesloten, individueel of samen}

Twee zeer relevante dimensies waarmee activiteiten kunnen worden getypeerd zijn de dimensies

\[\text{Open} \quad \text{Individueel} \quad \text{Gesloten} \quad \text{Samen}\]

\[\text{Figuur 32: Dimensies waarmee activiteiten kunnen worden getypeerd}\]

De dimensie ‘individueel – samen’ geeft aan of een activiteit helemaal alleen, helemaal samen of deels alleen en deels samen moet worden uitgevoerd.
De dimensie ‘open – gesloten’ geeft aan of een activiteit veel of weinig ruimte laat voor eigen initiatief. In een open activiteit heeft een student de mogelijkheid zelf invulling te geven aan of keuzes te maken bij aspecten

\[\[26\] \text{Projectgroep Didamo: Brigitte De Craene, Ellen Rusman, Rob Nadolski, Gerard van den Boom}\]

Met de twee dimensies kan het al eerder gebruikte voorbeeld getypeerd worden.

“Lees het hoofdstuk over ‘Brand management’, streep alle begrippen aan die u niet kent en zoek daarvan de betekenis op. Voeg de door u geselecteerde begrippen toe aan de woordenlijst van dit hoofdstuk en geef ook de door u gevonden betekenis”.

Open of gesloten?
In deze samengestelde taak of activiteit ligt het te lezen hoofdstuk over ‘Brand management’ vast en is dus voor wat betreft de inhoud gesloten.
Ook voor de uit te voeren acties is de taak gesloten.
Voor het op te leveren product geldt een zekere mate van openheid, het aantal te selecteren begrippen is niet gegeven.
De mate van openheid zou veranderd kunnen worden door bijvoorbeeld geen hoofdstuk voor te schrijven, maar een Internet zoekopdracht te geven en/of het aantal te selecteren begrippen voor te schrijven. Daarmee zou de activiteit inhoudelijk open(er) worden, maar voor het op te leveren product meer gesloten.

Samen of individueel?
De taak of activiteit is zo geformuleerd dat individuele uitvoering voor de hand ligt. Het individuele product van de opdracht is een bijdrage aan een woordenlijst.
Eerder is de voorbeeldtaak gebruikt in combinatie met de studeeraanwijzing:
“Bekommer u niet om dubbele woorden in de woordenlijst. Later gaat u samen met enkele medestudenten de lijst opschonen waarbij u samen de ‘beste’ betekenis selecteert”.

Als aan deze studeeraanwijzing uitwerking wordt gegeven in een vervolgopdracht komt het samenwerkingsaspect om de hoek kijken. Bijvoorbeeld:
“Neem deel aan de bijeenkomst in de Virtuele klas. Loop gezamenlijk de woordenlijst door op zoek naar dubbele resultaten. Bediscussieer de gegeven betekenissen en selecteer voor verder gebruik in de cursus de volgens de groep beste betekenis. Plaats de definitieve lijst in de bronnenverzameling van de cursus”.

Het uiteindelijke resultaat is dan op bovenindividueel niveau een gezamenlijke woordenlijst waarin de bijdragen van alle studenten zijn opgenomen.

Het belang van een goed inhoudelijk-didactisch scenario
Bij het opstellen van een inhoudelijk-didactisch scenario worden de activiteiten ingepland. Daarbij kan gevarieerd worden op de dimensies ‘open – gesloten’ en ‘individueel – samen’. Het is niet altijd volstrekt duidelijk welke keuze ten aanzien van deze dimensies de beste is. Persoonlijke voorkeuren spelen vaak een rol.
Onder andere om eentonigheid te voorkomen is het goed om bij het inzetten van activiteiten alle mogelijkheden van variatie op de twee dimensies te overwegen en er rekening mee te houden. Bedenk:
• Open activiteiten doen een groter beroep op eigen initiatief dan gesloten activiteiten.
• Gesloten activiteiten zijn zinvol als er slechts één weg naar het doel leidt.
• Open activiteiten doen een beroep op creativiteit en inventiviteit.
• Gesloten activiteiten leveren vaak beter beheersbaar onderwijs op, zowel qua logistiek als qua benodigde tijdsinvestering van studenten en docenten.
• Open activiteiten worden vaak motiverender gevonden.
• Samenwerking levert vaak inhoudelijke voordelen, twee weten meer dan één en andere gezichtspunten kunnen verdieping opleveren.
• Voor de beheersbaarheid van het onderwijsproces zijn individuele gesloten activiteiten te verkiezen boven open samenwerkingsactiviteiten.
Opdrachten met modellen

- Activiteiten die een beroep doen op samenwerking doen afbreuk aan de vrijheid van tijd en tempo en soms ook afbreuk aan de vrijheid van plaats.
- Samenwerking maakt studenten van elkaar afhankelijk.
- Samenwerken is ook gewoon soms leuk, stimulerend en motiverend.
- Als leren samenwerken een doel is moet er worden samengewerkt.
- De ELO met Blackboard of Moodle biedt mogelijkheden voor het realiseren van samenwerking, maar deze mogelijkheden zijn niet onbeperkt.
- Gebruik van Elluminate kan samenwerking ondersteunen.
- De studentaantallen zijn van invloed op de wenselijkheid om gesloten, voorgestructureerde feedback in het Ewb in te bouwen dan wel te opteren voor meer open, feedback-op-amaat die door een docent moet worden verzorgd.
- Voorgestructureerde feedback vraagt aandacht en tijdsinvesterings tijdens het ontwikkelproces van de cursus. Feedback-op-amaat verzorgd door een docent is eenvoudig in te plannen tijdens het ontwikkelproces, maar vormt tijdens de exploitatie van een cursus gedurende de gehele levensduur van de cursus onderdeel van de begeleidingslast.

De boodschap van deze paragraaf: zoek naar de juiste balans in het cursusontwerp en werk dit goed uit in het inhoudelijk-didactisch scenario.

5.3 Activiteiten, interactie en de (on)mogelijkheden van de ELO

Activiteiten worden gepresenteerd in een E-werkboek. Bij het inplannen en uitwerken van activiteiten is het nodig stil te staan bij de vraag of er naar aanleiding van de activiteit een of andere vorm van verdere interactie dient plaats te vinden. Opties daarbij:
- geen interactie voorzien
- wel interactie voorzien, en wel:
 - met alleen het systeem (de elo), bijvoorbeeld het insturen van een antwoord en het terugontvangen van voorgeprogrammeerde standaardfeedback.
 - met collega student(en), bijvoorbeeld het leveren en ontvangen van peerfeedback op een werkstuk of het bespreken van interpretaties van een bepaalde tekst door enkele studenten in een (zelf belegde) skype-meeting of in een Elluminatesessie.
 - met docent(en), bijvoorbeeld het inleveren en met feedback terug ontvangen van een werkstuk of het inbellen tijdens een telefonisch spreekuur.

De logistiek of workflow van de geplande interactie moet altijd goed worden doordacht en uitgewerkt in het didactisch scenario. Wanneer er sprake is van een activiteit die samen met een of meerdere medestudenten moet worden uitgevoerd, moet deze samenwerking vooraf goed ingepland zijn. De workflow van de interactie moet in de betreffende activiteit (vraag, opdracht, taak, instructie, etc.) of met behulp van andere bouwstenen (bindtekst, toelichting, studeeraanwijzing, etc.) eenduidig worden uiteengezet. Bij de meeste vormen van interactie speelt het systeem een rol. Interactie kan verlopen via Blackboard, Moodle, Elluminate of Emergo. Elk van deze systemen heeft daarvoor specifieke voorzieningen. Afhankelijk van de soort interactie die is uitgewerkt in het didactisch scenario kunnen een of meerdere systemen ingezet worden.

Bij het bedenken, plannen en uitwerken van activiteiten is het goed om rekening te houden met de mogelijkheden en onmogelijkheden van Studienet. Daarnaast is het handig om rekening te houden met je eigen kennis van de applicaties van Studienet en met de mogelijkheden die er zijn om ondersteuning in te roepen bij de uitwerking van plannen in de verschillende applicaties. Eerder vermelden we al dat elke taak of opdracht bestaat uit drie elementen:
1 De aanduiding van ‘Wat’ gedaan moet worden. Uitgewerkt in een tekst met betreffende werkwoorden en specificaties. Zo’n tekst is eenvoudig en op verschillende manieren te realiseren met Blackboard of Moodle.

2 De aanduiding van bronnen, materialen, hulpmiddelen of andere zaken die een student kan gebruiken bij uitvoering van de opdracht. Dit is op meerdere manieren te implementeren in Blackboard of Moodle, bijvoorbeeld:
 - Links naar bijlagen opgenomen in systeem;
 - Verwijzing naar boek of reader;
 - Links naar materialen en hulpmiddelen in Blackboard of Moodle;
 - Links naar materialen en hulpmiddelen buiten de elo (bijvoorbeeld Delicious, Google Earth, Twitter of Endnote Web);
 - Links naar externe bronnen.

3 Ook met betrekking tot het derde element van een opdracht of taak, het op te leveren product, zijn er meerdere mogelijkheden. Afhankelijk van wat een student moet doen met een product en wat er vervolgens gebeurt met dat product onderscheiden we diverse typen van eenzelfde activiteit.
 In het voorbeeld:
 “Lees het hoofdstuk over ‘Brand management’; kies één van de twee methoden die erin zijn beschreven. Beargumenteer waarom de door u gekozen methode beter is dan de andere. Schrijf uw argumentatie op in maximaal 400 woorden”.

 moet een student als product een argumentatie opleveren. De opdracht kan verschillen voor wel of niet inleveren of insturen, de technische oplossing voor het insturen van het product en de manier waarop studenten voorzien worden van feedback. Veelal zal het product de vorm hebben van een tekstdocument, maar natuurlijk zijn andere formats denkbaar, zoals excelbestanden, foto’s, audio- of video-opnamen of een ingevulde digitale vragenlijst of toets die is opgenomen in het Ewb.

 In figuur 33 zijn verschillende mogelijkheden schematisch weergegeven.

![Figuur 33: Schematisch overzicht van afhandeling opdracht en feedback](image-url)
Ontwerpen met modellen

De opties waarbij de student de argumentatie (algemeen gesteld het product) bewaart in haar of zijn eigen schrijfblok en die waarbij de student een bestand bewaart op de eigen computer en niet instuurt verschillen voor de feedbackvormen niet van elkaar. Soms zal er geen feedback zijn en soms is er standaardfeedback in de cursus beschikbaar waar mee de student het eigen product kan vergelijken. We geven hierna van de diverse opdrachttypen die zijn af te leiden uit het overzicht van figuur 33 een voorbeeld en vatten ze aan het eind van deze paragraaf samen in tabel 4.

Opdrachttypen en voorbeelden

| Type 1 | Student werkt het product uit (bewaart dit in geschreven vorm of als bestand op de eigen computer) en krijgt geen feedback. |

Voorbeeld 1.1 uit cursus B18231: Organisatiecultuur (Blackboard)

Vat het artikel in eigen woorden samen en bewaar uw samenvatting. Bij een van de volgende opdrachten in deze cursus heeft u deze samenvatting weer nodig.
Ontwerpen met modellen

Type 2

| Student werkt het product uit (bewaart dit in geschreven vorm of als bestand op de eigen computer) en kan de uitwerking vergelijken met standaardfeedback in de ELO.

Voorbeeld 2.1 uit de cursus C19112: Inleiding kunstgeschiedenis (Blackboard)

<table>
<thead>
<tr>
<th>Winkelbok</th>
<th>Leerinhoud</th>
<th>Leerdoel</th>
<th>Leeractiviteit</th>
<th>Leerresultaat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opgaven 16.3 Abstractie</td>
<td>Introductie 16.3</td>
<td>Inleiding kunstgeschiedenis (Blackboard)</td>
<td>De in paragraaf 2 besproken aandacht voor de autonome uitdrukkingskracht van beeldende middelen leidde in de jaren 1910-1913 tot kunstwerken waarin de voorstelling nauwelijks of geheel geen rol meer speelt. Deze kunst werd abstract genoemd. Rummens wijst erop dat met het woord abstract fettelijk twee categorieën van abstractie worden aangeduid: kunst waarin de voorstelling sterk geabstraheerd is, maar nog wel herkenbaar, en volledig abstracte kunst, die op geen enkele manier is gebaseerd op de zichtbare werkelijkheid. Paragraaf 3 laat voorbeelden zien van beide vormen van abstractie. Ook in de kunsthistorie was er al sinds de 19de eeuw meer aandacht voor abstracte compositieschema's dan voor de voorstelling, zelfs bij figuratieve kunst. Lees paragraaf 3 en doe dan de opgaven 16.3. Probeer de opgaven in eerste instantie te doen zonder de tekst te raadplegen.</td>
<td></td>
</tr>
<tr>
<td>Opgave 16.3a</td>
<td>Bekijk u in de hoofdafbeeldingen bij de nummers 65 tot en met 85. Noteer de nummers waarvan de hoofdafbeelding een geabstraheerde voorstelling is. Noteer ook de nummers met een volledig abstracte hoofdafbeelding.</td>
<td>Markeren als doorgenomen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Studenten kunnen zelf de feedback opvragen. De feedback komt beschikbaar door te klikken op de knop ‘Markeren als doorgenomen’.
Voorbeeld 2.2 uit de gratis cursus Het fundament van leren en doceren (‘OpenU’, portal.ou.nl)

Opdracht
In het artikel ‘A reflexive model for teaching instructional design’, dat u als casus wordt aangeboden om de relaties tussen leren, doceren en ontwerpen van onderwijs te illustreren, bespreken Shambough en Magliaro (2001) de ontwikkeling van een onderwijsmodel. Ze expliciteren hun eigen opvattingen over leren, lichten toe hoe ze op basis van deze opvattingen instructieprincipes hebben geformuleerd en hoe ze deze principes vervolgens bij het ontwerpen en ontwikkelen van de opleiding en van hun ‘Reflexive Teaching Model hebben toegepast.

Lees het PDF artikel ‘A reflexive approach to learning Instructional design’ van Shambough en Magliaro (2001, pp. 69-77) goed door en ge hierbij specifiek in op de volgende aspecten:

- inventariseer de opvattingen over leren en instructie die in het artikel aan bod komen;
- koppel hieraan de, voor de auteurs, waardevolle instructieprincipes die ze afleiden uit de geïnventariseerde leerprincipes;
- geef bij elk instructieprincipe een voorbeeld van de manier waarop Shambough en Magliaro (2001) het principe concretiseren in hun onderwijsmodel;
- voeg op beknopte wijze uw kritische overwegingen bij de casus.

Zie het PDF uitgewerkt voorbeeld voor een terugkoppeling op deze opdracht.

Voorbeeld 3.1

Vat het artikel in eigen woorden samen. Plaats uw samenvatting in de discussiegroep van de cursus via een reply op het startbericht ‘Double loop learning’.

NB: Bij een van de volgende opdrachten in deze cursus heeft u deze samenvatting weer nodig.
Voorbeeld 4.1

Bestudeer het artikel van Chris Agyris ‘Double loop learning in organizations’.
Vat het artikel in eigen woorden samen en upload uw samenvatting.
Na het uploaden ontvangt u een feedbackbericht.

NB: Het feedbackbericht bevat aanwijzingen en criteria voor de samenvatting, zoals “In de samenvatting moeten de volgende kernbegrippen genoemd zijn <opsomming>; van de volgende begrippen moet een definitie gegeven worden <opsomming>; de kernideeën van single loop en double loop learning moeten adequaat met elkaar vergeleken worden.

Voorbeeld 5.1 uit cursus B40317 Advanced studies in management (Blackboard)

Studenten werken in een blok een aantal opeenvolgende opdrachten uit. Ze leveren zo gaandeweg een product op waarin hun activiteiten in het blok zijn samengevat. Het blok wordt afgesloten met de opdracht het product voor beoordeling naar de docent te sturen.
Ontwerpen met modellen

Het versturen gebeurt door het uploaden van bestanden naar de ELO.

Voorbeeld 6.1 uit cursus B02112 Ondernemen en managen (Blackboard)

In voorgaand voorbeeld is geen sprake van feedback.
Als docent wel feedback stuurt naar de student in reactie op de ingezonden uitwerking is er sprake van type 7 in plaats van type 6.
Ontwerpen met modellen

Type 7

Student werkt het product uit in een bestand en stuurt dit per e-mail naar docent. Docent verzorgt feedback voor de student.

Voorbeeld 7.1 uit cursus T07431 Software engineering (Blackboard)

Opdrachten

Info

<table>
<thead>
<tr>
<th>opdracht</th>
<th>onderwerp</th>
<th>na hoofdstuk</th>
<th>studielast</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Participatory Design en Requirements elicitation</td>
<td>7</td>
<td>6 uur</td>
</tr>
<tr>
<td>2</td>
<td>Rational Unified Process (RUP) en eXtreme Programming (XP)</td>
<td>22</td>
<td>6 uur</td>
</tr>
<tr>
<td>3</td>
<td>Code inspections, XP en refactoring</td>
<td>24</td>
<td>4 uur</td>
</tr>
<tr>
<td>4</td>
<td>Requirements analysis en ontwerp</td>
<td>24</td>
<td>6 uur</td>
</tr>
<tr>
<td>5</td>
<td>Open-source softwareontwikkeling</td>
<td>32</td>
<td>6 uur</td>
</tr>
</tbody>
</table>

De opdrachten kunnen in principe in vrije keuze volgorde worden gemaakt en ingeleverd. Bedenk wel dat de meeste opdrachten pas na het bestuderen van paad 5 van het tekstboek gemaakt kunnen worden zoals de meesten studieblok in het maken van de opdrachten gaat zitten. Kijk voor aanvullende informatie bij Bronnen.

Voor vragen over de opdrachten: Kijk dan in de discussieramte van deze cursus. U kunt hier zelf een belangrijke bijdrage leveren!

Belangrijk

Maak bij de uitwerking van de opdrachten gebruik van de word-documenten die hiervoor beschikbaar zijn. Bij elke opdracht staat een link naar het bijhorende word-document. Download dat document, voorziet het van uw persoonlijke gegevens en de uitwerking. Stel dat u ten minste twee weken voor het inleveren de intenties van de examenrad op en kijk bij bronnen voor het overige.

Bij sommige opdrachten zijn de aanvullende documenten vermeld onder de opdracht zelf. Vergeet daar dan te kijken en de documenten te downloaden.

Opdracht 1: Participatory Design en Requirements elicitation

Bijgevoegd bestanden: T07341-Oppdracht 1.doc (5048)

Klikken op het bijgevoegde bestand opent voor de student een formulier zoals hieronder getoond. In dat formulier kan zij of hij de opgaven maken. De student mailt het ingevulde formulier naar de docent.

Software Engineering T07341

<table>
<thead>
<tr>
<th>Naam student</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studentnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Datum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Opdracht 1

Participatory Design en Requirements elicitation

Maak deze opdracht na het bestuderen van hoofdstuk 6 en 7 uit het tekstboek. Vermeld in uw uitwerkingen zo nauwkeurig mogelijk welke bronnen u heeft geraadpleegd.

Studielast

De studielast van deze opdracht is circa 6 uur.

Invulinstructies

Gebruik de lichtgekleurde vakken om de vragen te beantwoorden.

Indien je geen antwoord hoeft of kunt invullen, laat het vak dan leeg.

Indien je commentaar op de opdracht hebt, zet dat dan bij de antwoorden.

Houd je aan de eventueel aangegeven maximale lengte van het antwoord.

Lettertype: Arial 10

a In hoofdstuk 7, paragraaf 7.2 geeft Sommerville een overzicht van mogelijke methoden en technieken van requirements-elicitation. In de praktijk kan er in deze fase van een softwareproject veel mis gaan, zeker wanneer er sprake is van complexe systemen die sterk ingrijpen op bedrijfssystemen en op de wijze waarop ze ingrijpen in het handelen van de gebruikers.
Ontwerpen met modellen

(stakeholders). Dit kan grote gevolgen hebben voor het eindproduct.

Beschrijf kort drie methoden voor requirements-elicitation en formuleer naast de voordelen ook de gevaren en de nadelen van deze methoden.

In dit voorbeeld verstuurt de student zijn of haar uitwerkingen en ontvangt geen directe feedback. De student ontvangt wel een vorm van uitgestelde feedback, dat gebeurt namelijk tijdens het tentamen.

Type 8

| Student werkt het product uit in een bestand, uploadt dit naar de ELO. Eén of meer medestudenten leveren peerfeedback voor de student. |

Voorbeeld 8.1 uit cursus O18321 Leren en ontwikkeling (Blackboard)

Opdracht voor de peer review

Kies en beschrijf bondig een onderwerp voor een les met een duur van één uur voor een zelfgekozen doelgroep. Beschrijf uw doelgroep (leeftijd, onderwijssector, gender).

Formuleer één leerdoel in termen van Gagne’s taxonomie waaraan de volledige les gevaard zal zijn.

Gagne onderscheidt negen onderwijsfasen (‘events or instruction’) die steeds aan de orde zijn. Beschrijf met concrete voorbeelden de negen fasen met betrekking tot de door u gekozen les en leerdoel.

Materialen voor de peer review:

Gebruik de volgende *Tabel 9 events zorg* om uw opdracht te structureren en geef eigen concrete voorbeelden.

Gebruik het volgende formulier om het leesontwerp van uw medestudent van feedback te voorzien.

Gebruik het volgende formulier voor de *evaluatie van de feedback* die u ontvangt hebt.

Werkwijze:

Uw uitwerking van deze opdracht (beschrijvingen van doelgroep, leerdoel en fasen) plaatst u in de speciale ‘Peer review in Studienet’ Discussiegroep. Via deze Discussiegroep krijgt u van een medestudent feedback op uw leesontwerp en geeft u zelf ook feedback aan een medestudent. Medewerking aan deze peer feedback is verplicht en bedoeld om u vertrouwd te maken met het geven van taakgerichte feedback. De feedbackcriteria zijn dezelfde als de beoordelingscriteria bij het tentamen, te weten:

1. Complexiteit: Alle gevraagde elementen zijn aanwezig
2. Lengte: De elementen zijn niet te kort maar ook niet te langtadig beschreven (adequate lengte)
3. Originaliteit: geen plagiaat van het handboek of andere bronnen (voor zover bekend)
4. Helderheid: De elementen zijn duidelijk en helder getoetst (transparante schrijfstijl)
5. Inhoud: De informatie is inhoudelijk correct (geen foutieve weergave van Gagne’s theorie)
6. Logica: De gelegde verbanden, gemaakte vergelijkingen, bedachte voorbeelden, etc. zijn logisch en juist (de redeneringen zijn knoppend)

Er zijn geen exacte gewichten voor elk criterium, maar het vijfde en zesde criterium zijn het belangrijkst omdat daaruit het beste blijkt dat de theorie van Gagne echt is begrepen.

Nadere informatie over de peer review vindt u onder de knop ‘Peer review’ in het menu. Nadere informatie over de bijzondere verplichtingen vindt u onder de knop ‘Tentamen’.
Student werkt product uit in een (tekst)invoerveld in het Ewb. Via knop ‘verzenden’ stuurt student het product naar de ELO en krijgt geen feedback.

Voorbeeld 9.1 uit cursus S48112 Inleiding in de psychologie (Moodle)

NY: In dit voorbeeld is geen feedback beschikbaar.
In de cursus staat: “Bij elke taak in dit werkboek krijgt u, na de leesopdracht, een aantal opdrachten aangeboden dat u kan helpen bij het verwerken van de stof. Deze opdrachten worden niet door een docent beoordeeld. U maakt ze dus echt voor u zelf. Om u toch te voorzien van enige reflectie op uw werk zijn alle opdrachten voorzien van automatische feedback. Vaak is dat in de vorm van een voorbeeldantwoord dat u kunt vergelijken met uw eigen werk. Op die manier bent u in staat uw eigen werk te beoordelen en te corrigeren.”

Het voorbeeld is gerealiseerd in de Moodle toetsmodule. Bij type 9 is sprake van een (tekst)invoerveld. In het voorbeeld is hiervan een speciale variant in gebruik, namelijk invoervelden met een uitklapkeuzemenu waaruit de student één optie moet selecteren. Bij opdrachten waarbij sprake is van een open antwoordmogelijkheid zal doorgaans een tekstinvoerveld gebruikt worden (zoals in het volgende voorbeeld te zien is).
Ontwerpen met modellen

| **Type 10** | Student werkt product uit in een (tekst)invoerveld in het Ewb. Via knop ‘verzenden’ stuurt student het product naar de ELO. Het systeem stelt automatisch standaardfeedback beschikbaar. |

Voorbeeld 10.1 uit de cursus S48112 Inleiding in de psychologie (Moodle)

1

Vaak wordt de biologie aangewezen als de schakel tussen de natuurwetenschappen en de psychologie. Ook de psychofysica zou je echter zo kunnen noemen. Waarom?

- Beschrijf kort wat het centrale onderwerp is waar de psychofysica zich mee bezighoudt en geef daarbij antwoord op de bovenstaande vraag.
- In psychofysisch onderzoek wordt onderscheid gemaakt tussen absolute en differentiële srempebr. Beschrijf beide begrippen en geef van beide een voorbeeld in de vorm van een vraag die je zou kunnen onderzoeken.
- De weberfractie voor het heffen van gewichten is 1/50. Leg uit wat deze fractie betekent en bereken hem voor gewichten van 50 gram, 100 gram, 500 gram, 1 kilogram, 5 kilogram en 10 kilogram.

Formuleer hieronder uw antwoord en klik vervolgens op Bewaren om uw antwoord vast te leggen en het voorbeeldantwoord te bekijken. Door uw antwoord hiermee te vergelijken, kunt u zelf uw werk controleren.

Als student op nakijken klikt, verschijnt er standaardfeedback.

(Zou er geen voorbeeldantwoord beschikbaar zijn, dan was dit een voorbeeld van het type 9).
Voorbeeld 10.2 uit de cursus S76311: Adaptatie en gedragsverandering bij chronisch zieken (Moodle)

Eind 2009 ontstond er veel commotie over het vaccinatiebeleid ten aanzien van Nieuwe Influenza A (H1N1) oftewel de Mexicaanse griep. Lees eventueel nogmaals het krantenartikel over vaccinatieangst (De Volkskrant, 09-11-2009).

In de media is de discussie omtrent de veiligheid van het nieuwe vaccin veelvuldig aan bod geweest. Beschouw de determinanten voor het wel of niet laten vaccineren op basis van de in hoofdstuk 8 beschreven determinanten van het hulpvraagproces.

Als student op nakijken klikt, verschijnt er standaardfeedback.
Voorbeeld 11.1

De Open Universiteit gebruikt naast elkaar ten minste 3 ELO’s: Blackboard, Moodle en OpenU. De Open Universiteit heeft volgens dit katern ten minste 10 modelvarianten voor elektronische werkboeken beschikbaar. Binnen die modellen kunnen vele opdrachttypen een rol vervullen. In deze opdracht wordt je gevraagd de combinaties van ELO’s, modellen en opdrachttypen uit te zoeken en te beoordelen. Het resultaat van deze exercitie kan je invullen in het gegeven schema. Geef per cel aan in hoeverre de ELO’s (kolommen) mogelijkheden bieden om de modellen en opdrachttypen erin uit te werken.

<table>
<thead>
<tr>
<th></th>
<th>Blackboard</th>
<th>Moodle</th>
<th>OpenU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modellen</td>
<td>Studietaakvariant</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deeltaakvariant</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Themavariant</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blokvariant</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Studieadviesvariant</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4C/ID-model</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VGO-model</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PGO-model</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Casusmodel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Projectmodel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opdrachttypen</td>
<td>Type 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type 12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Als u tevreden bent over wat u hebt ingevuld, klik dan op ‘Verzenden’.

Binnen 10 werkdagen ontvangt u feedback van uw docent.
Voorbeeld 12.1

Ga naar de digitale bibliotheek. Zoek en download het volgende artikel:

Lees het essay grondig door.

Zoek eventueel meer informatie over de aangekaarde problematiek.

Voer vervolgens de volgende activiteiten uit:

1. Vorm je een mening over de aangekaarte problematiek.
2. Deel je mening met medestudenten in de discussiegroep van de cursus.
3. Schrijf een position paper (maximaal 500 woorden) over het gebruik van PowerPoint en doe voorstellen voor goed gebruik van PowerPoint.

5. Vraag twee medestudenten om commentaar op je position paper. Benader daarvoor medestudenten die je al kent, of plaats een algemene oproep in de discussiegroep van de cursus.
7. Werk je eigen position paper bij naar aanleiding van ontvangen commentaren.
8. Vat in een tweede document de ontvangen commentaren samen en beschrijf in dat document ook wat je met die commentaren hebt gedaan.

9. Stuur versie 2 van je position paper samen met het document over de ontvangen commentaren en de verwerking ervan naar de docent. *(Via uploaden of het invoervenster)*.
10. Het position paper wordt gecontroleerd op plagiaat, wordt beoordeeld door de docent en komt via de cursus beschikbaar in de map ‘afgeronde position papers’.
Tabel 4: Samenvattend overzicht opdrachttypes volgens soorten uitwerking en feedback

<table>
<thead>
<tr>
<th>Type 1</th>
<th>Student werkt het product uit in een bestand, bewaart dit op de eigen computer en krijgt geen feedback.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 2</td>
<td>Student werkt het product uit in een bestand, bewaart dit op de eigen computer en kan de eigen uitwerking vergelijken met standaardfeedback in de ELO.</td>
</tr>
<tr>
<td>Type 3</td>
<td>Student werkt het product uit in een bestand, uploadt dit naar de ELO en krijgt geen feedback.</td>
</tr>
<tr>
<td>Type 4</td>
<td>Student werkt het product uit in een bestand en uploadt dit naar de ELO. Het systeem stelt automatisch standaardfeedback beschikbaar.</td>
</tr>
<tr>
<td>Type 5</td>
<td>Student werkt het product uit in een bestand en uploadt dit naar de ELO. Docent verzorgt feedback voor de student.</td>
</tr>
<tr>
<td>Type 6</td>
<td>Student werkt het product uit in een bestand en stuurt dit per e-mail naar docent. Student ontvangt geen feedback.</td>
</tr>
<tr>
<td>Type 7</td>
<td>Student werkt het product uit in een bestand en stuurt dit per e-mail naar docent. Docent verzorgt feedback voor de student.</td>
</tr>
<tr>
<td>Type 8</td>
<td>Student werkt het product uit in een bestand, uploadt dit naar de ELO. Eén of meer medestudenten leveren peerfeedback voor de student.</td>
</tr>
<tr>
<td>Type 9</td>
<td>Student werkt product uit in een (tekst)invoerveld in het Ewb. Via knop ‘verzenden’ stuurt student het product naar de ELO en krijgt geen feedback.</td>
</tr>
<tr>
<td>Type 10</td>
<td>Student werkt product uit in een (tekst)invoerveld in het Ewb. Via knop ‘verzenden’ stuurt student het product naar de ELO. Het systeem stelt automatisch standaardfeedback beschikbaar.</td>
</tr>
<tr>
<td>Type 11</td>
<td>Student werkt product uit in een (tekst)invoerveld in het Ewb. Via knop ‘verzenden’ stuurt student het product naar de ELO. Docent verzorgt feedback voor de student.</td>
</tr>
<tr>
<td>Type 12</td>
<td>Student werkt product uit in een (tekst)invoerveld in het Ewb. Via knop ‘verzenden’ stuurt student het product naar de ELO. Eén of meer medestudenten leveren peerfeedback voor de student.</td>
</tr>
</tbody>
</table>

Hoe opdrachten daadwerkelijk worden afgehandeld wordt in het didactisch scenario vastgelegd. De technische uitwerking van de verschillende typen opdrachten en dan vooral de afhandeling ervan met behulp van de diverse implementatieopties in Blackboard en Moodle behandelen we niet in dit katern.

In Studienet zijn daarvoor in Blackboard en Moodle specifieke demo’s te vinden. Deze demo’s komen ook beschikbaar via de website ‘OpenU’ in het [Infopunt docenten Open Universiteit](https://www.openuniversity.nl).
6 Afsluiting

Voor dit moment, tot zover dit katern over het ontwikkelen van cursussen met een elektronisch werkboek. De ontwikkelingen op de terreinen didactiek en elektronische leeromgeving gaan door. Ongetwijfeld zullen nieuwe inzichten en technieken nieuwe mogelijkheden gaan bieden. Daarmee is gegeven dat ook de ideeën over en de modellen voor elektronisch cursusmateriaal te zijner tijd aangepast en verder uitgebreid en uitgewerkt zullen moeten worden. IPO zal aan deze zaken blijven doorwerken.

Allereerst zal de komende tijd vooral aandacht besteed worden aan alles rond de implementatie van de modellen en technische uitwerking van de bouwstenen voor die modellen in de applicaties van studienet (Blackboard en Moodle). Beschrijvingen en voorbeelden zullen geplaatst worden in Blackboard en Moodle. De gepresenteerde voorbeelden van opdrachttypen in par. 5.3 zijn nog maar een begin. In studienet zelf zijn veel meer goede voorbeelden te vinden. Gevonden technische oplossingen voor ontworpen complexe taak en opdrachtvormen en ook nieuwe voorbeelden zullen beschikbaar komen en verzameld worden in Infopunt docenten Open Universiteit. IPO zal doorgaan alle informatie betreffende het maken en exploiteren van het OU-onderwijs samen te brengen en te ontsluiten.

Ten slotte, wij hebben een poging gewaagd. Alle reacties, opmerkingen, suggesties voor aanvullingen en commentaren (negatief en positief) zijn van harte welkom!
Referenties

Open Universiteit - cursus B18231: Organisatiecultuur.

Open Universiteit - cursus B40317: Advanced studies in management.

Open Universiteit - cursus C19112: Inleiding kunstgeschiedenis.

Open Universiteit - cursus O18321: Leren en ontwikkeling.

Open Universiteit - cursus Q23421: Ontwerpen van onderwijs en opleidingen.

Open Universiteit - cursus O35421: Project onderwijswetenschappen.

Open Universiteit - cursus S48112: Inleiding in de psychologie.

Open Universiteit - cursus S76311: Adoptatie en gedragsverandering bij chronisch zieken.

Open Universiteit - cursus T07431: Software engineering.

Websites:
- en.wikipedia.org/wiki/position_paper
- nl.wikipedia.org/wiki/Probleemgestuurd_onderwijs
- nl.wikipedia.org/wiki/Projectonderwijs
- portal.ou.nl/web/infopunt-docenten/home
- portal.ou.nl/web/topic-4cid
- www.21edingen.nl
- www.delicious.com
- www.digitaledidactiek.nl
- www.emergo.cc
- www.skype.com
- www.tensteps.info
Bijlagen

Bijlage 1 Cursusteam

Een **cursusteam** is een groep mensen die samen aan de ontwikkeling van een cursus werkt. In de groep zijn alle benodigde expertises vertegenwoordigd. Projectleider van een cursusteam is meestal de docent die binnen een faculteit belast is met het ontwikkelen van een cursus: de cursusteamleider (CTL). Andere leden van het cursusteam kunnen vanuit de faculteit, vanuit andere organisatieonderdelen van de Open Universiteit (o.a. IPO, medewerker Beeldresearch, Vormgeving) of als externe leden van buiten de OU (o.a. als auteur, referent) in het ontwikkelproces deelnemen. Niet alle cursusteamleden participeren in alle fasen even intensief. Men levert haar/zel bijdrage aan die activiteiten waarvoor men bij uitstek deskundig is.

Specifieke deskundigheden

- Inhoudelijke expertise: naast CTL, interne collega’s en externe inhuur
- Organisatorische expertise: CTL organiseert samen met de facultaire projectcoördinator het ontwikkelproject
- Didactische expertise raadplegen of inschakelen: neem contact op met Wil Giesbertz, contactpersoon namens IPO
- Redactionele expertise: laat alle teksten redigeren door een redacteur
- Vormgeving van zowel teksten, beeldmaterialen als digitaal materiaal: raadpleeg een vormgever
- Expertise m.b.t. Studienet: vraag Elosa of IPO bij bijzonderheden of gebruik van Elluminate, QMP of Emergo
- Expertise m.b.t. multimedia: vraag IPO
- Beeldresearch & rechtenverwerving: vraag de facultaire projectcoördinator en/of Ronald Gossieau
- Expertise m.b.t. proeftoetsen en veldtoetsen: raadpleeg Leo Wagemans, coördinator proeftoetsen (binnen IPO)
- Expertise m.b.t. technische realisatie van schriftelijke en/of digitale cursusmaterialen: raadpleeg facultaire projectcoördinator of (facultaire) specialisten op dit gebied.
Bijlage 2 Omschrijving niveau bachelors en masters (‘Dublin descriptoren’)\(^\text{27}\)

<table>
<thead>
<tr>
<th></th>
<th>Kwalificaties Bachelor</th>
<th>Kwalificaties Master</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennis en inzicht</td>
<td>Heeft aantoonbare kennis en inzicht van een vakgebied, waarbij wordt voortgebouwd op het niveau bereikt in het voortgezet onderwijs en dit wordt overtroffen; verkeert normaal gesproken op een niveau dat, met ondersteuning van gespecialiseerde handboeken, enige aspecten bevat waarvoor kennis van de laatste ontwikkelingen in het vakgebied noodzakelijk is.</td>
<td>Heeft aantoonbare kennis en inzicht, gebaseerd op de kennis en het inzicht die normaal gesprok verondersteld worden op het niveau van Bachelor en die deze overtreffen en/of versterken, alsmede een basis of mogelijkheid bieden om een originele bijdrage te leveren aan het ontwikkelen en/of toepassen van ideeën, vaak in onderzoekverband.</td>
</tr>
<tr>
<td>Toepassen kennis en inzicht</td>
<td>Is in staat om zijn/haar kennis en inzicht op dusdanige wijze toe te passen, dat dit een professionele benadering van zijn/haar werkzaamheden of beroep aantoont, alsmede in het bezit van competenties gekenmerkt door het opstellen en staven van argumenten en het oplossen van problemen op het vakgebied.</td>
<td>Is in staat om kennis en inzicht en probleemoplossende vermogens toe te passen in nieuwe of onbekende omstandigheden binnen bredere (of multidisciplinaire) verbanden die gerelateerd zijn aan het vakgebied; is in staat om kennis te integreren en met complexe materie om te gaan.</td>
</tr>
<tr>
<td>Oordeelsvorming</td>
<td>Is in staat om relevante gegevens te verzamelen en interpreteren (meestal op het vakgebied) met het doel een oordeel te vormen dat mede gebaseerd is op de overweging van relevante sociaal-maatschappelijke, wetenschappelijke of ethische aangelegenheden.</td>
<td>Is in staat om oordelen te formuleren op grond van onvolledige of beperkte informatie, maar met medeweging van sociaal-maatschappelijke en ethische verantwoordelijkheden verbonden aan het toepassen.</td>
</tr>
<tr>
<td>Communicatie</td>
<td>Is in staat om informatie, ideeën en oplossingen over te brengen op een publiek bestaande uit specialisten of niet-specialisten.</td>
<td>Is in staat om conclusies, alsmede de kennis en beweegredenen die hieraan ten grondslag liggen, duidelijk en ondubbelzinnig over te brengen op een publiek van specialisten of niet-specialisten.</td>
</tr>
<tr>
<td>Leervaardigheden</td>
<td>Bezit de leervaardigheden die noodzakelijk zijn om een vervolgstudie die een hoog niveau van autonomie veronderstelt aan te gaan.</td>
<td>Bezit de leervaardigheden die hem of haar in staat stellen een vervolgstudie aan te gaan met een grotendeels zelfgestuurd of autonoom karakter.</td>
</tr>
</tbody>
</table>

Bijlage 3 Voorbeeld didactisch ontwerp (ingevoeld voor deel van een cursus)

Cursusgegevens:
- Titel: *Titel van de cursus*
- Plaats in het curriculum: *in ieder geval: welke cursussen zijn voorkennis voor deze cursus?*
- Omvang: *aantal modulen, studielast*
- Leerdoelen: *beschrijving van leerdoelen*
- Tentaminering: *beschrijving van de tentamenvorm*

<table>
<thead>
<tr>
<th>Activiteit</th>
<th>Doel</th>
<th>Inhoud</th>
<th>Materialen/media</th>
<th>Begeleiding</th>
<th>Product</th>
<th>Studielast</th>
<th>Bijzonderheden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingangstoets maken</td>
<td>Vaststellen beginniveau</td>
<td>Representatief voor ingangsniveau</td>
<td>Ingangstoets</td>
<td>Feedback door docent (30” per student)</td>
<td>Toetsuitslag</td>
<td>60”</td>
<td>Eventueel studieadvies en verwijzing n.a.v toets geven</td>
</tr>
<tr>
<td>Opfriscursus bestuderen</td>
<td>Beginniveau ophogen</td>
<td>Opfristeksten en verwijzing naar extra bronnen</td>
<td></td>
<td></td>
<td></td>
<td>Variabel</td>
<td>Facultatief element in de cursus; studielast valt buiten cursus</td>
</tr>
<tr>
<td>Opnieuw ingangstoets maken</td>
<td>Beginniveau checken</td>
<td>Representatief voor ingangsniveau</td>
<td>Ingangstoets</td>
<td>Ingebouwde feedback</td>
<td>Toetsuitslag</td>
<td>60”</td>
<td>Tijdsbesteding valt buiten cursus</td>
</tr>
<tr>
<td>Bestuderen tekstboek</td>
<td>Kernbegrippen opgesomd</td>
<td>Tekstboek Aanwijzingen voor maken van samenvattingen</td>
<td></td>
<td></td>
<td></td>
<td>840”</td>
<td>Uitzoeken of tekstboek als pdf beschikbaar te stellen is</td>
</tr>
<tr>
<td>Voortgangstoets maken</td>
<td>Beheersing van tekstboek vaststellen</td>
<td>MC-toets</td>
<td>Ingebouwde feedback</td>
<td></td>
<td></td>
<td>60”</td>
<td>Overwegen: Resultaat opnemen in portfolio?</td>
</tr>
<tr>
<td>Casus bestuderen</td>
<td>Student met praktijksituatie confronteren</td>
<td>Praktijkgeval</td>
<td>Casustekst + Videopresentatie van casus</td>
<td>90”</td>
<td>Search (laten) uitvoeren naar geschikt videomateriaal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>--------------</td>
<td>--</td>
<td>------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oefenwerkstuk schrijven en insturen</td>
<td></td>
<td>Aanwijzingen voor het schrijven van het werkstuk + Criteria</td>
<td>Feedback door docent (30” per student)</td>
<td>580”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oefenwerkstuk bijstellen en insturen</td>
<td></td>
<td>Feedback eerste versie + aanwijzingen voor het schrijven van het werkstuk</td>
<td>Beoordeling door docent (30” per student)</td>
<td>120”</td>
<td>Opnemen in portfolio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casus bestuderen</td>
<td></td>
<td>Casusdossier + multimediale presentatie van de casus</td>
<td></td>
<td>180”</td>
<td>Casusdossier: ‘ruwe’ authentieke documenten etc. MM-presentatie: montage van materiaal tot ‘documentaire’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eindwerkstuk schrijven en insturen</td>
<td>Nagaan in hoeverre doelen bereikt zijn</td>
<td>Aanwijzingen voor het schrijven van het eindwerkstuk. + Criteria.</td>
<td>Beoordeling door docent (60” per student)</td>
<td>Eindwerkstuk + Cijferbeoordeling</td>
<td>740”</td>
<td>Opnemen in portfolio Eindbeoordeling registreren</td>
<td></td>
</tr>
<tr>
<td>Totaal</td>
<td></td>
<td></td>
<td></td>
<td>150” / 2,5 uur per student</td>
<td>2670” ≈ 45 uur</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ontwerpen met modellen

Bijlage 4 Voorbeelden van werk- of actiewoorden (n.a.v. Anderson-Krathwohl taxonomie)

Deze bijlage bevat een overzicht van werkwoorden en activiteiten die gebruikt kunnen worden bij het formuleren van leerdoelen en het specificeren van leeractiviteiten. Het overzicht is niet volledig; andere werk- of actiewoorden kunnen zeker ook gebruikt worden.

Knowledge dimension Factual knowledge: feiten en begrippen

<table>
<thead>
<tr>
<th>Voorbeelden van werk- of actiewoorden</th>
<th>Weten</th>
<th>Begrijpen</th>
<th>Toepassen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weten</td>
<td>Lees; luister naar; herlees; bestudeer; memoriseer; automatiseer; observeer; som op; benoem; zoek op; herhaal; maak samenvatting</td>
<td>Beluister; herlees; observeer; geef een voorbeeld van; verbind met/relateer; schematiseer; vat samen; verklar; vul aan; vul in; positioneer, verbind met/koppel; (her-)orden; neem een kijkje in de praktijk</td>
<td>Gebruik; som op; pas toe; geef een voorbeeld; schematiseer; verklar; vul aan; rangschik; vergelijk; concretiseer; imiteer; selecteer; lokaliseer; synthetiseer; stel op; becommentarieer; onderbouw; kies; bedenk mogelijkheden om</td>
</tr>
<tr>
<td>Analyseren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluieren</td>
<td>Weten; Lees; beluister; herlees; bestudeer; memoriseer; automatiseer; observeer; som op; benoem; vul in; selecteer; lokaliseer; vat samen</td>
<td>Begrijpen; Lees; observeer; geef een voorbeeld; relateer; schematiseer; verklar; vul aan; positioneer; verbind met/koppel aan; (her-)orden; argumenteer; rangschik de elementen; completeer; reconstrueer; voorspel een volgende scène; schrap alle bijzaken (bijv. in een tekst; schrijf voor- en tegenargumenten op; verplaats je in het standpunt van</td>
<td>Toepassen; Pas toe; geef een voorbeeld; verklar; selecteer; denk na over; brainstorm; imiteer; beargumenteer; onderbouw; schrijf een samenvatting of essay; bediscussieer; neem deel aan; verbeter; herschrijf een (bijv. betoog); neem nota; beoordeel; werk uit; becommentarieer; generaliseer; voorspel; bedenk een analogie; verdedig; geef metafoor of analogie; vertaal naar positie x; ga op onderzoek uit om informatie te verzamelen; bedenk en noteer wat fout kan gaan in een proces; beoordeel de juistheid van beweringen; motiveer de juistheid van beweringen; breng een probleem of</td>
</tr>
<tr>
<td>Creëren</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Knowledge dimension Conceptual knowledge: Relaties, structuren en theorieën

<table>
<thead>
<tr>
<th>Voorbeelden van werk- of actiewoorden</th>
<th>Weten</th>
<th>Begrijpen</th>
<th>Toepassen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weten</td>
<td>Lees; beluister; herlees; bestudeer; memoriseer; automatiseer; observeer; som op; benoem; vul in; selecteer; lokaliseer; vat saman</td>
<td>Lees; observeer; geef een voorbeeld; relateer; schematiseer; verklar; vul aan; positioneer; verbind met/koppel aan; (her-)orden; argumenteer; rangschik de elementen; completeer; reconstrueer; voorspel een volgende scène; schrap alle bijzaken (bijv. in een tekst; schrijf voor- en tegenargumenten op; verplaats je in het standpunt van</td>
<td>Toepassen; Pas toe; geef een voorbeeld; verklar; selecteer; denk na over; brainstorm; imiteer; beargumenteer; onderbouw; schrijf een samenvatting of essay; bediscussieer; neem deel aan; verbeter; herschrijf een (bijv. betoog); neem nota; beoordeel; werk uit; becommentarieer; generaliseer; voorspel; bedenk een analogie; verdedig; geef metafoor of analogie; vertaal naar positie x; ga op onderzoek uit om informatie te verzamelen; bedenk en noteer wat fout kan gaan in een proces; beoordeel de juistheid van beweringen; motiveer de juistheid van beweringen; breng een probleem of</td>
</tr>
<tr>
<td>Analyseren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluieren</td>
<td>Weten; Lees; beluister; herlees; bestudeer; memoriseer; automatiseer; observeer; som op; benoem; vul in; selecteer; lokaliseer; vat samen</td>
<td>Begrijpen; Lees; observeer; geef een voorbeeld; relateer; schematiseer; verklar; vul aan; positioneer; verbind met/koppel aan; (her-)orden; argumenteer; rangschik de elementen; completeer; reconstrueer; voorspel een volgende scène; schrap alle bijzaken (bijv. in een tekst; schrijf voor- en tegenargumenten op; verplaats je in het standpunt van</td>
<td>Toepassen; Pas toe; geef een voorbeeld; verklar; selecteer; denk na over; brainstorm; imiteer; beargumenteer; onderbouw; schrijf een samenvatting of essay; bediscussieer; neem deel aan; verbeter; herschrijf een (bijv. betoog); neem nota; beoordeel; werk uit; becommentarieer; generaliseer; voorspel; bedenk een analogie; verdedig; geef metafoor of analogie; vertaal naar positie x; ga op onderzoek uit om informatie te verzamelen; bedenk en noteer wat fout kan gaan in een proces; beoordeel de juistheid van beweringen; motiveer de juistheid van beweringen; breng een probleem of</td>
</tr>
<tr>
<td>Creëren</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

28 Bewerkt product van DIDAMO-project
Ontwerpen met modellen

Analyseren	Werk volgende casus uit; bediscussieer; vergelijk; vergelijk theorie a en b voorspel; analyseer; schematiseer; modelleer
Evaluate	Evaluate; geef commentaar; geef je eigen visie op; beoordeel; probeer uit; test; beproef
Creëren	Presenteer (mondeling, schriftelijk, visueel); maak een planning voor . . ; beargumenteer; definieer; schrijf een toelichting bij een figuur of schema; schrijf een instructie bij een tekening; vat een tekst samen in bijv. 120 woorden; stel toetsvragen op die aan bepaalde criteria voldoen; verdedig (schriftelijk of mondeling) een willekeurige positie in een debat over theorie X; formuleer kritiek op . . ; verbeter

Knowledge dimension Procedural knowledge: Methoden, procedures en vaardigheden

<table>
<thead>
<tr>
<th>Voorbeelden van werk- of actiewoorden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weten</td>
</tr>
<tr>
<td>Begrijpen</td>
</tr>
<tr>
<td>Toepassen</td>
</tr>
<tr>
<td>Analyseren</td>
</tr>
<tr>
<td>Evalueren</td>
</tr>
</tbody>
</table>